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Abstract

Single-cell RNA sequencing (scRNA-seq) technologies allow for the study of gene
expression in individual cells. Often, it is of interest to understand how transcriptional
activity is associated with cell-specific covariates, such as cell type, genotype, or measures
of cell health. Traditional approaches for this type of association mapping assume inde-
pendence between the outcome variables (or genes), and perform a separate regression
for each. However, these methods are computationally costly and ignore the substantial
correlation structure of gene expression. Furthermore, count-based scRNA-seq data pose
challenges for traditional models based on Gaussian assumptions. We aim to resolve these
issues by developing a reduced-rank regression model that identifies low-dimensional lin-
ear associations between a large number of cell-specific covariates and high-dimensional
gene expression readouts. Our probabilistic model uses a Poisson likelihood in order to
account for the unique structure of scRNA-seq counts. We demonstrate the performance
of our model using simulations, and we apply our model to a scRNA-seq dataset, a spatial
gene expression dataset, and a bulk RNA-seq dataset to show its behavior in three distinct
analyses. We show that our statistical modeling approach, which is based on reduced-rank
regression, captures associations between gene expression and cell- and sample-specific
covariates by leveraging low-dimensional representations of transcriptional states.

1 Background

Recent advances in high-throughput genomic assays have allowed for the creation of expan-
sive data sets that are useful for exploring biological variation across cells. In particular,
single-cell RNA-sequencing (scRNA-seq) technologies provide gene expression measurements
at the individual cell level, allowing for the analysis of variation in transcriptional activity
across cells within a single sample (Tang et al., 2009; Sasagawa et al., 2013; Jaitin et al., 2014;
Zeisel et al., 2015). While characterizing this variation is useful by itself for exploratory anal-
ysis, it is also of interest to study in a more targeted way how variation relates to cell-specific
covariates, such as cell type, genotype, and cell health. Studying associations between gene
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expression and properties of single cells has the potential to enrich our understanding of the
relationship between these covariates and transcription at single-cell resolution.

While methods for association studies have been widely developed for bulk RNA se-
quencing (RNA-seq) data (McCarthy et al., 2008; Purcell et al., 2007), methods for study-
ing associations on the level of individual cells are much less developed. Moreover, there
are several unique challenges in manipulating and analyzing the data generated by these
single-cell assays, as compared to bulk RNA-seq assays. These scRNA-seq data sets are
high dimensional — there are tens of thousands of genes in the human genome — which
makes them difficult to interpret gene-by-gene; furthermore, the count-based nature of the
data — made up of counts of sequenced RNA fragments that map to a specific gene in
a genome to approximate expression levels of that gene — presents a challenge for many
standard statistical tools that make Gaussian assumptions (Cantor et al., 2010).

In this paper, we propose a statistical modeling approach based on reduced-rank regres-
sion that captures associations between gene expression and cell- and sample-specific covari-
ates by leveraging low-dimensional representations of transcription. Within this framework,
we propose two specific models: Poisson reduced-rank regression (PRRR), which adapts a
generalized linear model to the reduced rank setting, and nonnegative Poisson reduced-rank
regression (nn-PRRR), which provides interpretable nonnegative regression components. In
what follows, we first review several related threads of research, and describe our modeling
approach. Then, using simulated data and single-cell RNA-seq, bulk RNA-seq, and spatial
gene expression experiments, we show that our models are useful for a wide range of associ-
ation study types, including studying the transcriptional hallmarks of cell types, genotypes
and eQTLs, and genes correlated with disease status.

1.1 Genome-Wide Association Studies

Since the completion of the Human Genome Project in 2003 (Collins et al., 2003) and the
HapMap project in 2005 (Consortium et al., 2003), researchers have developed the genomic
and statistical tools necessary to study the human genome at a large scale in order to better
detect, treat, and prevent diseases. Genome-wide association studies (GWAS) are used to
identify disease-causing genetic variation across complete genomes. Genetic variation often
comes in the form of single nucleotide polymorphisms (SNPs) that can be compared between
healthy patient and patients with a disease (Bush and Moore, 2012). GWAS approaches
have found a plethora of gene variants that are associated with common diseases such as
asthma, type 2 diabetes, and more (Ober and Nicolae, 2011; Frayling, 2007).

In a similar vein, quantitative trait loci (QTL) studies identify associations between ge-
netic variants and quantitative phenotypes by examining molecular markers (Zeng, 1994;
Doerge, 2002). A common experimental setup is to use gene expression levels as the molec-
ular marker, in which case the study is referred to as an expression QTL (eQTL) (Nica
and Dermitzakis, 2013; Kendziorski et al., 2006). Most eQTL studies have relied on bulk
RNA-seq technologies to measure the gene expression levels of entire tissues (Pickrell et al.,
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2010; GTEx Consortium, 2017, 2020).
In this context, the statistical eQTL problem is to estimate the pairwise association be-

tween a set of genetic variants (the covariates or explanatory variables) and the expression
level of each gene (the outcome variables). This is typically performed using a linear regres-
sion model. In particular, let X be an N × P matrix containing information about genetic
variants across P SNPs for N individuals or tissue samples, and let Y ∈ RN×Q be a matrix
of corresponding gene expression levels across Q genes in these individuals or tissues. eQTL
approaches typically use a linear model to find associations between genotype and pheno-
type, estimating these relationships (Cantor et al., 2010). Generically, these approaches use
a model of the form

y·q = x·pbpq + ε, (1)

where x·p is the pth column of X, y·q is the qth column of Y, ε ∈ RN is a vector of
independent zero-mean Gaussian-distributed noise terms, and bpq ∈ R is a scalar coeffi-
cient representing the linear relationship between SNP p and gene q for p = 1, . . . , P and
q = 1, . . . , Q. Downstream tests for significance can be performed on these coefficients to
identify associations (Li and Leal, 2008; Wu et al., 2011; Lee et al., 2012). Without further
assumptions, this model estimates the marginal association between single SNPs and single
genes independently. To accommodate polygenic contributions to phenotypes, multivariate
models of the form

Y = XB + ε, (2)

have been considered, where B ∈ RP×Q is a matrix of coefficients (Hoggart et al., 2008;
Logsdon et al., 2010; Wu et al., 2009). Under this framework, sparsity-inducing priors for B
have been proposed in order to scale these models to high-dimensional data (Li et al., 2011,
2015).

The advent of scRNA-seq technologies has opened the door for narrowing the investi-
gation of genotype-phenotype relationships from the level of whole tissues to the level of
individual cells. However, existing computational tools are insufficient for this purpose:
they typically do not accommodate count-based data, and they are seldom robust to high-
dimensional outcome variables. It is difficult to control the hypothesis testing error rate
in many eQTL analyses, which run millions to trillions of univariate association hypothesis
tests (one for each SNP-gene pair) (Cantor et al., 2010; GTEx Consortium, 2020, 2017;
Karczewski et al., 2021; Willer et al., 2013).

1.2 Count-based models

A further drawback of existing association testing frameworks is their assumption of Gaussian-
distributed data. Most canonical regression models assume an independent normally-distributed
response variable, with ε ∼ N (0, σ2IN ) in Equation 1. However, when the data consist of
count-based measurements, this assumption may be problematic. Various transformations
have been proposed to make the response variable approximately Gaussian (Butler et al.,
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2018a; Yu, 2009), but these transformations are known to distort the data distribution in un-
desirable ways (Townes et al., 2019; Booeshaghi and Pachter, 2021; Hafemeister and Satija,
2019). Count-based scRNA-seq data is discrete and nonnegative, with many gene expression
counts having a value of zero. The sparsity of the data poses a challenge to these standard
transformations (Townes et al., 2019).

An alternative to this approach is to model the gene expression data with a discrete
distribution. A common choice is the Poisson distribution, whose support is restricted to the
nonnegative integers and has been shown to improve the representation and interpretation
of scRNA-seq data when fitting statistical models (Townes et al., 2019; Jones et al., 2021). A
recent approach using a Poisson data likelihood proposed a naive Bayes model that assigns
cell-type identities to samples in scRNA-seq data based on reference data (Grabski and
Irizarry, 2020). The model uses a Poisson distribution to represent the count-based data,
but the high number of zeros in the data still poses a challenge. The sparsity of the data
interferes with standard estimates such as maximum likelihood estimates as rates of zero can
be produced for thousands of genes, making the model sensitive to genes with low expression
counts (Grabski and Irizarry, 2020). The model handles this challenge by introducing a
hierarchical structure, placing posterior distributions on parameters in order to recover non-
zero rate estimates for genes with zero counts in the reference data. However, the naive
Bayes model also assumes independence between genes, but this assumption does not hold
in practice, as expression has been observed to be correlated between genes (Butler et al.,
2018b; Townes et al., 2019; Van Dam et al., 2018).

1.3 Modeling multiple data modalities

Latent variable modeling approaches have also been proposed for modeling multi-view data.
The most popular approach has been canonical correlation analysis (CCA, (Hotelling, 1992))
and its probabilistic variants (Bach and Jordan, 2005; Zhao et al., 2016; Argelaguet et al.,
2018). CCA seeks a low-dimensional linear mapping of each dataset such that the resulting
low-dimensional vectors are maximally correlated.

max ρ(Xu,Yv) subject to u>u = 1,v>v = 1,

where ρ is the Pearson correlation function. The probabilistic version of this model projects
the features of each data modality into a shared low-dimensional latent space, assuming
heteroskedastic residual errors, maximizing the amount of variance explained in the data
modalities by the latent subspace. The weights, or factor loadings, in CCA models allow us
to identify covarying features across data modalities. A formal connection between CCA and
reduced-rank regression has been shown (Tso, 1981), where the canonical subspace found by
CCA is the same as the subspace of the maximum likelihood estimator for the reduced-rank
regression model. Despite their connections, the unsupervised nature of CCA does not lend
itself directly to association mapping between the data modalities. Conversely, reduced-rank
regression has a natural association testing framework because of its regression foundation.
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Recently, a latent variable model based on latent Dirichlet allocation (Blei et al., 2003;
Pritchard et al., 2000) for jointly modeling gene expression and genotype was proposed (Gewirtz
et al., 2021). This model projected both genotype data — using an equivalent of the Struc-
ture model (Pritchard et al., 2000) — and count-based gene expression data — using a
telescoping LDA model (Blei et al., 2003) — onto a shared latent subspace; we may then
identify covarying genes and gentoypes in a nonnegative latent representation. But discov-
ering associations in this framework requires association testing in held-out data, which is
limited by existing univariate methods and population data.

1.4 Reduced-Rank Regression Approaches

The transcriptional states of cells tend to exhibit strong correlation between genes (Stuart
et al., 2003). Thus, it is likely that the relationship between cell covariates and transcrip-
tional phenotypes in scRNA-seq data need not be modeled gene-by-gene. Rather, it is
reasonable to assume that these associations exhibit low-dimensional structure. Further-
more, treating each gene as independent is computationally and statistically inefficient; we
would like to exploit these relationships to perform fewer association tests and leverage
shared variation to improve statistical power in these often small sample sizes. These ideas
motivate a regression model whose coefficient matrix has low rank. Several approaches to
reduced-rank regression have been developed to take advantage of this opportunity.

Consider again the linear regression model in Equation 2. Here, B is a P ×Q matrix of
regression coefficients, where P is the number of covariates, and Q is the number of genes. In
most gene expression studies, Q (and sometimes P ) is large, and min(P,Q)� n. The core
assumption of reduced-rank regression (RRR) is that the matrix B has low rank (Anderson
et al., 1951). In particular, the RRR model assumes B has rank R � min(P,Q). This
implies that B can be factorized as an outer product of two low-rank matrices, giving us the
following reduced-rank regression model:

Y = XB + ε subject to B = UV>, (3)

where U ∈ RP×R and V ∈ RQ×R. In the context of gene expression studies, this low-rank
assumption implies that the relationship between cell-specific covariates and gene expression
can be described in terms of a small set of latent factors. In other words, variance in gene
expression is mediated by R different programs encoded in subsets of covariates; then B
captures both the covariates of interest and their effect sizes within each of the R programs.

Several estimation approaches have been proposed for RRR under the assumption of
Gaussian noise. A common method is to find the parameter values that minimize the
squared reconstruction error (Anderson et al., 1951; Reinsel and Velu, 1998):

min
U,V
‖Y −XUV>‖22.

This approach corresponds to finding the maximum likelihood solution of an RRR model
with Gaussian errors (εq ∼ N (0, σ2I) for q = 1, . . . , Q in Equation 3 as σ2 → 0). When B

5

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494236doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494236
http://creativecommons.org/licenses/by-nd/4.0/


is assumed to have full rank (that is, R = min(P,Q)) the minimization admits the ordinary
least squares (OLS) solution:

B̂OLS = (X>X)−1X>Y.

When R < min(P,Q), the RRR model has an eigenvalue solution:

B̂RRR = B̂OLSU1:RU>1:R,

where XB̂OLS = UDV> is the SVD of the fitted values, and U1:R = [u1, · · · ,uR] contains
the leading R left singular vectors of XB̂OLS .

Sparse approaches to RRR have been proposed as well. Sparsity in the decomposition
leads to greater interpretability by including nonzero weights only on a subset of the covari-
ates and genes for any component. One model (Qian et al., 2020) imposes sparsity on the
coefficient matrix B by taking an iterative approach to estimation, solving both a sparse
regression problem and the reduced-rank decomposition in alternating frames. The base
algorithm solves the following optimization problem:

min
U,V

1

2
‖Y −XUV>‖22 + λ

p∑
j=1

‖Uj‖2,

where U ∈ RP×R, V ∈ RQ×R, Up represents the pth row of U, the rank R is specified by the
modeler, and λ is a sparsity penalty parameter. The alternating minimization problem can
be broken into two steps: optimizing U, and optimizing V. After parameter initialization on
iteration ` = 1, on iteration ` = 2, . . . , L, the algorithm first solves an orthogonal Procrustes
problem for V:

V(`) = argminV:VV>=I ‖Y −XU(`−1)V>‖22, (4)

where U(`−1) is the estimate of U from the previous iteration. The algorithm then solves a
group lasso problem for U:

U` = argminU

1

2
‖YV(`) −XU‖22 + λ

P∑
p=1

‖Uj‖2. (5)

Equation 4 can be solved using a singular value decomposition, and Equation 5 can be solved
using techniques for group lasso (Friedman et al., 2010). These two steps are repeated for
L steps or until convergence.

Another approach developed a Bayesian RRR framework for association mapping in the
GWAS setting (Valente et al., 2015). The model — called Bayesian Extendable Reduced-
Rank Regression (BERRRI) — uses a nonparametric Indian Buffet Process prior for the
latent factors, which allows the rank k to be estimated from the data. BERRRI then uses
a variational Bayes approximation to the posterior for inference of the model parameters.
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However, BERRRI does not explicitly model count-based data, and its inference procedure
is not computationally tractable for genome-scale analyses.

The linear RRR model has been generalized to nonlinear functions as well. The most
popular nonlinear approaches have used neural networks with multiple inputs and multiple
outputs (Diamantaras and Kung, 1994). The linear RRR model is equivalent to a single-layer
multi-layer perceptron with only linear transformations between layers (Baldi and Hornik,
1989; Kunin et al., 2019). This model can be extended to the nonlinear case by including
nonlinear activation functions (Baldi and Hornik, 1989; Aoyagi and Watanabe, 2005). How-
ever, these models typically to do not capture count data and lack the interpretability of
linear models for downstream association testing.

In this manuscript, we propose a statistical model and associated computational frame-
work that addresses the problems that arise with modeling genotype-phenotype associations
for high-dimensional phenotypes captured with count data. We propose a reduced-rank
regression model that finds low-dimensional associations between genotypes (or other high-
dimensional covariates) and and RNA-sequencing data (or other high-dimensional count-
based phenotypes). Relying on low-dimensional associations alleviates the problem of es-
timating millions of pairwise associations. Furthermore, our model uses count-based like-
lihoods that allows both single-cell RNA-sequencing data and bulk RNA-sequencing. We
show that our approach appropriately models gene expression data with count-based likeli-
hoods, leads to interpretable subsets of genes and genetic variants in each dimension, and
uses flexible, computationally tractable inference methods that allow for uncertainty quan-
tification.

2 Methods

We propose a probabilistic reduced-rank regression model with a Poisson data likelihood
— which we call Poisson reduced-rank regression (PRRR) — for association mapping in
count-based sequencing data. Our approach takes the form of a reduced-rank regression
model with intermediate factors that explicitly model count-based data using a Poisson
likelihood. These factors are interpretable and can be used to to identify and analyze the
global structure of associations between cell covariates and cell phenotypes, such as gene
expression levels. We ensure that inference is tractable and efficient in these models by
leveraging a stochastic variational inference approach.

2.1 Poisson Reduced-Rank Regression (PRRR)

PRRR is designed to identify associations between cell-specific covariates and high-dimensional
gene expression profiles. The response matrix Y ∈ NN×Q

0 is a matrix containing (in this
application) RNA transcript counts for Q genes in N cells, where N0 = N ∪ 0. The N × P
matrix X is a design matrix containing covariates for each cell. For example, these covariates
could represent cell type, genotype, or measures of cell health.
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PRRR uses a Poisson likelihood to model the transcript counts for each cell as the
response variables, conditional on observed cell-specific covariates. The Poisson rate is pa-
rameterized by a low-rank linear mapping from the cell covariates.

Specifically, the transcript count of gene p in cell n, denoted by ynp is modeled as a draw
from a Poisson distribution, ynp ∼ Poisson(λnp). The Poisson rate λnp is determined by
a linear function of the vector of covariates for cell n, denoted as xn. We use a canonical
link function from the exponential family to map the domain of the latent variables to the
positive real line — similar to a GLM approach. In particular, we use a log link function to
ensure that, when pushed through the inverse link — the exp function — the linear predictor
lies in R+. The likelihood model is then

ynp|U,V,xn ∼ Poisson(exp(xnUv>p·)), (6)

where vp· is the pth row of V. We place Gaussian priors on columns of U and V:

ur ∼ N (0, σ21IP ), vr ∼ N (0, σ22IQ), (7)

for R = 1, . . . , R. Intuitively, U and V capture the low-rank associations between X and Y.

2.1.1 Nonnegative PRRR

In some cases, the covariates X are entirely nonnegative — possibly representing counts or
categories — in which case it may be of interest to identify nonnegative, low-rank regression
coefficients that explain the associations in a completely additive fashion. For example, in
eQTL mapping, the covariates are typically the count of the minor allele for each SNP, where
xn ∈ {0, 1, 2}, and it may be of interest to identify a nonnegative, “parts-based” combination
of SNPs that explain phenotypic variation. For these cases, we propose nonnegative Poisson
reduced-rank regression (nn-PRRR), whose likelihood is given by

ynp|U,V,xn ∼ Poisson(snx>n Uv>p·), (8)

where sn is a cell-specific size factor modeling the total number of transcripts in cell i. We
fix sn to be the total number of transcript counts in cell, sn =

∑p
j=1 ynp. We place Gamma

priors on the elements of U and V:

upr ∼ Gamma(αu, βu), vqr ∼ Gamma(αv, βv) (9)

for p = 1, . . . , P , q = 1, . . . , Q, and R = 1, . . . , R. For all experiments, we set αu = αv = 2
and βu = βv = 1.

2.2 Estimation and inference

We propose two approaches to fit our model to data: 1) computing a point estimate for the
coefficients using maximum a posteriori (MAP) estimation and 2) full Bayesian posterior
inference for the regression coefficients using an approximate inference procedure.
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2.2.1 MAP estimation

The MAP solution in our model is the coefficient matrices UMAP ,VMAP with maximum
posterior probability given the data X and Y. In particular,

UMAP ,VMAP = argmaxU,V p(U,V|X,Y).

Expanding the posterior with Bayes’ rule, we can write the MAP objective as

max
U,V

p(Y|X,U,V)p(U,V)

Z
,

where Z is a normalizing constant that does not depend on U or V. Taking a log, dropping
the constant Z, and leveraging the i.i.d. assumption, we arrive at our final MAP objective:

max
U,V

log p(U,V) +
N∑

n=1

log p(yn|xn,U,V).

Although this maximization problem does not have a closed-form solution, we use gradient-
based methods to iteratively maximize this log posterior with respect to U and V.

2.3 Variational inference

A fully Bayesian approach to inference, given a set of samples with paired cell covariates
and transcript counts, {(xn,yn)}Nn=1, would compute the posterior distribution of the pa-
rameters, U and V, given the data matrices X and Y. By Bayes’ rule,

p(U,V|X,Y) =
Y|p(X,U,V)p(U,V)

p(X,Y)
.

However, the marginal likelihood, p(X,Y), contains an intractable integral,

p(X,Y) =

∫
U,V

p(Y|X,U,V)p(U,V)dUdV. (10)

To circumvent this issue, we use a variational approximation to the posterior. Specifically,
we use a mean-field variational approximation, p(U,V) ≈ q(U,V) = q1(U)q2(V), where q1
and q2 are the variational distributions. Here, we specify the variational families for PRRR
and nn-PRRR to be normal and log normal, respectively,

q(upr) = N (µ1, σ
2
1), q(vqr) = N (µ2, σ

2
2), (PRRR) (11)

q(upr) = LogN (µ1, σ
2
1), q(vqr) = LogN (µ2, σ

2
2). (nn-PRRR) (12)
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We minimize the KL divergence between the true posterior and the variational approxima-
tion, which is equivalent to maximizing a lower bound on the model evidence (called the
ELBO). This lower bound for PRRR is given by

p(X,Y) ≥ L := Eq(A)q(B)

[
p(X,Y,U,V)

q(U)q(V)
.

]
We maximize this lower bound with respect to the variational parameters using stochastic
variational inference (Hoffman et al., 2013) as implemented in TensorFlow Probability (Dil-
lon et al., 2017). For all experiments, we use the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 0.01.

3 Results

3.1 Simulation experiments

We first demonstrate the use cases of PRRR and test the robustness and accuracy of our
model using simulated data.

3.1.1 PRRR identifies low-dimensional association maps

We first sought to confirm that PRRR identifies the low-dimensional relationships between
covariates and outcomes.

To start in a setting that can be visualized, we generated a synthetic dataset in which the
covariates and outcomes are both two-dimensional. Specifically, we sampled data from the
generative model (Equations (8)-(9)), setting R = 1. We forced a correlation between the
covariates and outcomes. We found that PRRR could reliably detect the one-dimensional
association between X and Y (Figure 1). Moreover, we are able to recover a quantification
of the relationship between the covariates and outcomes, and visualize this relationship in
the low-dimensional space.

We next extended this simulation study and visualization to a small-scale synthetic
eQTL study. We generated N = 200 synthetic genotypes based on minor allele counts,
xn ∈ {0, 1, 2}, and sampled synthetic RNA transcript counts using the PRRR generative
model, with P = Q = 2 for visualization. We fit PRRR to these data and inspected the fitted
coefficients. We found that PRRR recovered these genotype-expression relationships, and
allowed for both inspection of the low-dimensional structure of these relationships, as well
as investigating univariate relationships (Figure 2). This experiment suggests that PRRR
may be useful to perform eQTL mapping.

3.1.2 PRRR identifies the optimal rank and is robust to misspecification

PRRR, like other reduced-rank regression approaches, requires selecting the rank R of the
coefficient matrix. A common approach is to evaluate the goodness-of-fit of the model at
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Figure 1: Illustration of PRRR. We fit PRRR to a toy dataset containing two cell-
specific covariates and two genes. The two covariates showed negative correlation, and the
two genes were jointly associated with the covariates (panel A). PRRR identifies the low-
rank structure of these multivariate relationships by decomposing the full coefficient matrix
into two low-rank matrices, A and B (panels B and C).

a b c

Figure 2: eQTL mapping in simulated single-cell data with PRRR. Toy example
demonstrating eQTL mapping with PRRR for two genetic variants and two genes. (a)
Genotype data, shown as the number of copies of the minor allele for variant 1 (x-axis)
and variant 2 (y-axis) and colored by each sample’s corresponding expression of gene 1. (b)
Gene expression values. The red line represents the fitted value for V with r = 1 in this toy
example for gene 1 (x-axis) and gene 2 (y-axis). (c) Relationship between genotype (x-axis)
and gene expression (y-axis) for the two genes.
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varying values of R, and select the one with the best fit to the data. To test whether this
is feasible with PRRR, we use synthetic data that was generated from PRRR’s generative
model with true rank R? = 3. We then fit the model with R ∈ {1, 2, . . . , 10} and compute
the ELBO for each fit. We repeated this experiment 30 times for each value of R.

We find that the PRRR ELBO peaked at the true value of R = 3 (Figure 3a), demon-
strating that the model’s fit to the data was best at the true rank R?. Moreover, we found
that while the goodness-of-fit sharply degraded for models with R < R?, the goodness-of-fit
declined more slowly for models with R > R?. This finding confirms similar observations
from previous studies (Qian et al., 2020), and suggests that setting the rank to be higher
than anticipated is protective against model misspecification.

3.1.3 PRRR is robust to data dimension

We next sought to validate the robustness of PRRR in the presence of higher-dimensional
data. To do so, we generated three datasets from the PRRR model, each with a different
number of response features (genes), Q ∈ {10, 50, 100}. We set the sample size to N =
200, and we randomly selected 80% of these samples to fit the model and held out the
remaining 20% to test the model. We fit PRRR on the training data using our MAP
estimation procedure and used the estimated parameters to compute the predicted Poisson
rate for the held-out data, λ̂np = exp(xnÛv̂>p·. We then computed the goodness-of-fit R2

measure between our predictions and the held-out dataset’s counts. To benchmark these
predictions, we compared PRRR’s predictive performance to two competing methods: a full-
rank version of PRRR and a multi-output LASSO model, as implemented in the R package
glmnet (Friedman et al., 2010). We repeated this experiment ten times for each method and
each data-generating condition.

We found that PRRR reliably achieves good predictive performance across all values
of the outcome dimension Q (Figure 3b). In contrast, the full-rank and LASSO models
performed worse.

To further validate PRRR and nn-PRRR on different data types, we conducted a sim-
ilar experiment with synthetic data generated using Splatter (Zappia et al., 2017), a data
simulator designed specifically for single-cell count data. We generated data for N = 200
samples, each belong to one of 10 groups, and used Q = 100 genes. We used the one-hot
encoded group labels as the covariates and the synthetic gene expression as the response.
We fit PRRR and nn-PRRR with R = 5, along with Gaussian RRR and full-rank Pois-
son regression, and we reserved a hold-out set for evaluating predictions. We found that
PRRR and nn-PRRR outperformed competing models in terms of their predictive R2 values
(Figure 3c).

These results suggest that accounting for the count-based data and the low-rank structure
of associations is vital, and that the PRRR model successfully captures this structure.

12

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494236doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494236
http://creativecommons.org/licenses/by-nd/4.0/


a b c

Figure 3: PRRR identifies optimal rank and is robust to data dimension. (a) Using
synthetic data generated under the PRRR model with a true rank of R? = 3, we fit PRRR
with a range of rank specifications on the x-axis, where R? = 3. The y-axis shows the ELBO
values for each model rank. Vertical ticks represent 95% confidence intervals. (b) Goodness-
of-fit R2 values for predictions from PRRR, a full-rank version of PRRR, and a multi-output
LASSO model (Friedman et al., 2010) for outcome data with dimension Q ∈ {10, 50, 100}.
(c) Goodness-of-fit R2 values for predictions from PRRR, nn-PRRR, and competing models
for outcome data generated from Splatter (Zappia et al., 2017).

3.1.4 PRRR predictions are robust to rank misspecification

To further explore the role of rank specification in our model, we performed a prediction
experiment for varying settings of the rank. We generated synthetic data as before with
R? = 3 and fit the model on 80% of the data while reserving 20% for testing. For a range of
ranks, R ∈ {1, 2, 3, 4, 5, 10, 20}, we fit PRRR, used the fitted model to make predictions for
the held-out data, and computed the R2 coefficient of determination for these predictions.
We performed this experiment using both maximum a posteriori (MAP) estimation and
variational inference to fit the model, repeating the experiment ten times for each rank in
both cases.

We found that the predictive performance was strongest when the model was correctly
specified (R = 3 in this case; Figure 4a, b). However, we observed that performance was
strong across a range of misspecified ranks as well. Similar to our previous experiment, we
observed that predictions were more robust for models with R > R? as compared to models
with R < R?.

To benchmark these predictions, we compared PRRR’s predictive performance to two
competing methods: a reduced-rank regression that assumes a Gaussian likelihood (Ander-
son et al., 1951) and the multi-output LASSO model (Friedman et al., 2010). We performed
a similar prediction experiment as above, computing the R2 for each model under a range
of rank specifications. We found that PRRR outperformed the two competing methods in
a range around the true rank R? = 3 (Figure 4c).
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MAP VI
a b c

Figure 4: PRRR is robust to rank misspecification. Using synthetic data generated
from the PRRR model with a true rank of R? = 3, we fit PRRR with a range of rank
specifications (x-axis). We made predictions for a held-out dataset and computed the R2

coefficient of determination, repeating this ten times for each rank. The y-axis shows the
R2 value between the predicted values and the true values on held-out samples. Boxes
show the median and upper and lower quartiles, and whiskers extend to 1.5 times the
interquartile range. (a) Maximum a posteriori estimates (MAP); (b) Variational inference
(VI); (c) Comparison with Gaussian RRR (Anderson et al., 1951) and LASSO (Friedman
et al., 2010).

3.2 Characterizing transcriptional hallmarks of pancreatic cell types

It has been widely observed that cell type is a major driver of transcriptional variation
between cells in a variety of tissue types (Zheng et al., 2017; Kotliar et al., 2019; Zeisel
et al., 2015; Chen et al., 2017). Given these observed differences between cell types, it is of
interest to identify the gene expression patterns that are characteristic of each cell type. Our
PRRR models present a principled approach for identifying these transcriptional hallmarks
of cell types by finding a low-dimensional mapping from cell type to expression.

To test this, we fit PRRR to an scRNA-seq dataset containing 1,578 cells that span
C = 14 unique cell types in the human pancreas (Baron et al., 2016). For cell n, we encode
its cell type as a one-hot vector xn ∈ {0, 1}C , and we treat the response variable yn as the
vector of RNA transcript counts in this cell. We extracted the coefficient matrices U and
V and studied their properties.

We found that PRRR was able to identify transcriptional markers in each cell type.
Among the 14 unique cell types present in the dataset, there are five that belong to the
family of islet cells (alpha, beta, gamma, delta, and epsilon cells). Given their functional
relatedness, these cell types are expected to show similar gene expression patterns compared
to patterns found in other cell types. Indeed, inspecting PRRR’s estimated coefficients,
we find that the model captures the low-dimensional gene expression patterns in islet cells
(Figure 5). We performed a hierarchical clustering on the PRRR coefficients, which revealed
that the islet cells clustered together (Figure 5). We found a similar clustering after fitting
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Figure 5: PRRR coefficients for pancreatic cell types. Heatmap showing the full
coefficient matrix UV>, with cell types on the rows and genes on the columns.

nn-PRRR on the same dataset (Supplementary Figure 12). Moreover, we observed that
the models separated islet cell types from non-islet cell types in the low-dimensional space
(Figure 6). Examining the factor loadings for each cell type, we found that specific factors
were especially enriched for islet or non-islet cell types (Figure 7). The islet-related factors
were enriched for pancreatic gene pathways, such as pancreas beta cells.

We also extracted the top genes for each cell type from the full PRRR coefficient matrix;
these genes can be viewed as “marker genes” whose expression is correlated with certain cell
type identities. We found that these marker genes corresponded to cell-type-specific tran-
scription patterns, such as REG1B being the top marker gene for acinar cells (Figure 13).

These findings imply that the low-dimensional space may be used to compare and con-
trast existing classifications within the data, as well as to discover possible new relationships
among covariates and phenotypes. They also show that PRRR is able to identify the distinct
transcriptional characteristics of specific cell types and groups of cell types, and that PRRR
could be used to identify marker genes for cell types.

3.3 Analyzing gene expression patterns in spatial datasets

Along with cell type, the physical organization of cells within a tissue has a strong impact
on gene expression due to tissue organization structure and cell-cell communication. The
rise of spatial gene expression profiling technologies provides an opportunity to study how
gene expression levels vary spatially across a tissue (Stickels et al., 2021; St̊ahl et al., 2016;
Rodriques et al., 2019; Lee et al., 2021). In particular, given gene expression data at the
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Figure 6: PRRR identifies similar expression patterns in islet cell types. Shown
here is the latent encoding of each cell type for each pair of latent variables in U, where
PRRR was fitted with R = 5 Each point in each subplot represents a cell type, and cell
types are colored by whether they are classified as islet cells or not. The densities on the
diagonal show the distribution of U values for islet and non-islet cell types in each latent
dimension.
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Figure 7: PRRR factors identify subgroups of cell types. (a) shows each cell type’s
loading onto each of the five latent factors in the U matrix. (b) shows a gene set enrichment
analysis of the gene loadings onto factors 2 and 4 in the V matrix.

individual cell level with appropriate spatial context, it is of interest to identify how the
expression of specific genes varies across the expanse of a tissue.

To study this with our modeling framework, we fit PRRR with rank R = 1 to a two-
dimensional spatial dataset containing 2,063 mouse brain sagittal anterior cells (10x Ge-
nomics, 2020). The X matrix is an N × 2 matrix containing two-dimensional spatial coordi-
nates for each cell n, and we treat the response variable Y as the matrix of RNA transcript
counts. After fitting PRRR, we extracted the model coefficients to inspect the spatial trends
in gene expression that it identified.

We found that PRRR model is able to identify trends in gene expression along one latent
dimension. While the model is constrained to only identify linear changes in gene expression
across space, it is able to identify a general trend in increased gene expression for individual
genes such as TTR and FABP7 (Figure 8). This result demonstrates the utility of our
model in the context of spatial genomics and further demonstrates the versatility of PRRR.

3.4 eQTL mapping

eQTL mapping is a common approach to finding associations between a genotypes and gene
expression profiles. However, this type of association mapping requires fitting a regression
between millions of genotype variants and the expression of tens of thousands of genes,
resulting in billions of univariate models (GTEx Consortium, 2017). The large number of
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Figure 8: PRRR identifies directional patterns in spatial gene expression data.
We applied PRRR to a Visium spatial gene expression readout from the sagittal anterior
region of a mouse brain, using each spot’s spatial coordinates as the covariates and each
spot’s gene expression levels as the outcome. Left: Spatial gene expression data for the gene
TTR and PRRR’s estimated spatial pattern for this gene. Right: Spatial gene expression
data for the gene FABP7 and PRRR’s estimated spatial pattern for this gene.
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univariate tests can cause these approaches to be prohibitive computationally and to lack
sufficient statistical power.

We hypothesized that our reduced-rank regression model could alleviate these issues
of computational tractability and statistical power. To test this, we applied PRRR to an
eQTL mapping setting to find a set of low-dimensional factors that capture the relationships
between genotype and gene expression. To do so, we used data from the Genotype Tissue
Expression (GTEx) Consortium (GTEx Consortium, 2020). For this experiment, we focused
on data collected from liver tissues from 227 donors. For each donor, the data consist of
paired genotype (as encoded by minor allele count xn ∈ {0, 1, 2}) and bulk gene expression
profiles.

We fit PRRR with R = 10 latent dimensions and extracted the low-rank regression co-
efficient matrix (Figure 9a, b). Within each factor, we can examine associations between
individual genetic variants and the expression of individual genes. For factor number r, we
do this by taking the outer product of the corresponding columns of U and V, respectively.
That is, we compute urv

>
r and examine the strongest SNP-gene relationships (Figure 10).

Investigating the latent factors more closely, we found several meaningful associations. For
example, after performing a gene set enrichment analysis, we found that the gene expres-
sion loadings for factor 9 were enriched for genes related to interferon gamma response and
inflammatory response (Figure 9c), two major functional roles of liver cells (Horras et al.,
2011; Robinson et al., 2016). We find similar results for nn-PRRR, although the V matrix is
much more sparse (Figure 15). The additional sparsity in the nn-PRRR results aligns well
with the parts-based representation of the low-dimensional space known with nonnegative
matrix factorizations (Lee and Seung, 1999; Donoho and Stodden, 2003; Townes and En-
gelhardt, 2021). This experiment suggests that the PRRR and nn-RRR framework may be
useful for studying associations between genotypes and phenotypes, especially when there
is low-dimensional correlation structure between the datasets and within each dataset indi-
vidually.

4 Discussion

In this paper, we present two reduced-rank regression models and associated variational
inference approaches — Poisson RRR (PRRR) and nonnegative Poisson RRR (nn-PRRR)
— to jointly model associations within two high-dimensional paired sets of features where the
response variables are counts. In simulations, PRRR and nn-PRRR are able to effectively
capture associations between paired high-dimensional data. Moreover, we show that these
models are robust to high-dimensional data, and can identify the optimal rank for the
parameter matrix. In the context of sequencing data, we find that PRRR and nn-PRRR
may be used for robust identification of cell types, quantifying the relationships between cell
types, and performing association mapping of genetic variants to correlated genes.

Several extensions of the model could be considered. A nonparametric prior could allow
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a b c

Figure 9: PRRR loadings matrices for the GTEx eQTL experiment. (a) A heatmap
representation of the matrix U, showing SNPs on the rows and latent dimensions on the
columns. (b) A heatmap representation of the matrix V, showing genes on the rows and
latent dimensions on the columns. (c) Gene set enrichment analysis (GSEA) of component
9 in V.

Figure 10: Three eQTL associations found in one latent factor of PRRR applied
to GTEx liver samples.
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for flexibly learning the rank of the parameter matrix, rather than requiring the rank to be
pre-specified, as in related work (Valente et al., 2015). Additionally, the generalized model
could be extended to different likelihood distributions. Furthermore, additional structure
could be added to the latent variables, such as sparsity or a gene network (Engelhardt and
Adams, 2014; Elyanow et al., 2020), to encode additional known structure in the covariates.

5 Conclusions

We present a Poisson reduced-rank regression (PRRR) model, along with a nonnegative
counterpart called nn-PRRR, for association mapping in count-based sequencing data. PRRR
is able to detect associations between a high-dimensional response matrix and a high-
dimensional set of predictors by leveraging low-dimensional representations of the data.
Using principled Bayesian modeling, PRRR is able to properly account for the count-based
nature of single-cell RNA sequencing data using a Poisson likelihood. We ensure that in-
ference is tractable and efficient in these models by applying a fast variational inference
approach.
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• Spatial gene expression data were downloaded from the 10x Genomics “Datasets” page.
Link.

21

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494236doi: bioRxiv preprint 

https://github.com/tianafitz/PRRR
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84133
https://gtexportal.org/home/datasets
https://www.10xgenomics.com/resources/datasets?query=&page=1&configure%5Bfacets%5D%5B0%5D=chemistryVersionAndThroughput&configure%5Bfacets%5D%5B1%5D=pipeline.version&configure%5BhitsPerPage%5D=500&menu%5Bproducts.name%5D=
https://doi.org/10.1101/2022.05.31.494236
http://creativecommons.org/licenses/by-nd/4.0/


9 Competing interests

BEE is on the SAB of Creyon Bio, Arrepath, and Freenome.

10 Authors’ contributions

TF, AJ, and BEE designed the method. TF implemented the method and conducted data
analysis. TF, AJ, and BEE analyzed the results. TF and AJ wrote the manuscript. TF,
AJ, and BEE edited the manuscript.

References

Fuchou Tang, Catalin Barbacioru, Yangzhou Wang, Ellen Nordman, Clarence Lee, Nanlan
Xu, Xiaohui Wang, John Bodeau, Brian B Tuch, Asim Siddiqui, et al. mrna-seq whole-
transcriptome analysis of a single cell. Nature methods, 6(5):377–382, 2009.

Yohei Sasagawa, Itoshi Nikaido, Tetsutaro Hayashi, Hiroki Danno, Kenichiro D Uno, Takeshi
Imai, and Hiroki R Ueda. Quartz-seq: a highly reproducible and sensitive single-cell rna
sequencing method, reveals non-genetic gene-expression heterogeneity. Genome biology,
14(4):1–17, 2013.

Diego Adhemar Jaitin, Ephraim Kenigsberg, Hadas Keren-Shaul, Naama Elefant, Franziska
Paul, Irina Zaretsky, Alexander Mildner, Nadav Cohen, Steffen Jung, Amos Tanay, et al.
Massively parallel single-cell rna-seq for marker-free decomposition of tissues into cell
types. Science, 343(6172):776–779, 2014.
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11 Appendix

11.1 RRR

The optimization problem for reduced-rank regression (RRR) is

min
B
‖Y −XB‖22

subject to rank(B) ≤ R,

where X is an N × P matrix of covariates, Y is an N × Q matrix of outcomes, and B is
a P × Q coefficient matrix with rank at most R. When R = min(P,Q), we have the OLS
solution,

B̂OLS = (X>X)−1X>Y.
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We can write the RRR optimization program in terms of the OLS solution:

min
B
‖Y −XB̂OLS‖22 + ‖XB̂OLS −XB‖22 (13)

subject to rank(B) ≤ R.
To see that these are equivalent, we can expand the loss function as follows.

‖Y −XB̂OLS‖22 + ‖XB̂OLS −XB‖22
=‖Y −X(X>X)−1X>Y‖22 + ‖X(X>X)−1X>Y −XB‖22
=Y>Y − 2Y>X(X>X)−1X>Y + 2Y>X(X>X)−1X>X(X>X)−1X>Y

−Y>X(X>X)−1X>XB−B>X>X(X>X)−1X>Y + B>X>XB

=Y>Y −Y>XB−B>X>Y + B>X>XB

=(Y −XB)>(Y −XB)

=‖Y −XB‖22.
Now, the first term in the minimization problem in Equation 13 does not depend on B, so
the problem becomes

min
B
‖XB̂OLS −XB‖22.

Rewriting the objective, we have

min
B
‖XB̂OLS −XB̂OLSB‖22.

Now, we can notice that this problem aligns with PCA. Let

Σn = (XB̂OLS)>XB̂OLS = B̂>OLSX>XB̂OLS = UΛU>

be the eigenvalue decomposition of the covariance of the fitted values. Then we have

B̂RRR = Uk,

where Uk = [u1, · · · ,uk] contains the eigenvectors corresponding to the top k eigenvalues.

11.2 Plate diagrams

11.3 GTEx metadata experiments

In an attempt to explore the organization of PRRR’s low-dimensional space, we ran the
model on a dataset containing gene expression counts along with patient metadata includ-
ing height, weight, underlying conditions, and demographics. We wanted to study how
features in the metadata are correlated with each other and with gene expression by ana-
lyzing the lower-dimensional matrices produced by the model. We were unable to recognize
any apparent associations in the low-dimensional space, likely due to the small number of
samples present in the data (about 200), and even less of these had all metadata points
present.
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Figure 11: Graphical model for PRRR and nn-PRRR.

Figure 12: nn-PRRR coefficients for pancreatic cell types. Heatmaps showing the
full coefficient matrix UV> for nn-PRRR (left is original, and right is on a log scale). Cell
types are shown on the rows and genes on the columns. In the left panel, white cells indicate
values near zero, implying that this coefficient matrix is highly sparse.

11.4 Supplementary figures
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Figure 13: Marker genes identified by PRRR for pancreatic cell types. For each
cell type, the ten genes with the highest coefficients in the matrix UV> were extracted for
each cell type. Some cell types share the same ten marker genes, which corresponds with our
observation that the cell types are largely overlapping in a PCA plot of the gene expression
data (Figure 14).
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Figure 14: PCA plot of pancreas scRNA-seq data. The first two principal components
(PCs) are plotted. Each point corresponds to a single cell and is colored by its annotated
cell type.
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Figure 15: nn-PRRR coefficients for GTEx eQTL mapping. Left: U matrix showing
SNPs on the rows and latent factors on the columns. Right: V matrix showing genes on the
rows and latent factors on the columns.
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Factor Pathway Adjusted p-val NES Leading edge

1 ALLOGRAFT REJECTION 7.16e-05 1.15e+00 FLNA,KRT1,RPS3A
1 APICAL JUNCTION 1.13e-03 1.13e+00 ACTB,MYL9,ACTG1
1 EMT 5.32e-07 1.18e+00 FN1,FLNA,TAGLN
1 HYPOXIA 1.29e-03 1.12e+00 DCN,ANXA2,FOS
1 MYC TARGETS V1 1.80e-03 1.12e+00 RPLP0,RPS6,RPS2
1 MYOGENESIS 3.91e-06 1.17e+00 MYH11,TAGLN,GSN
1 P53 PATHWAY 2.61e-03 1.12e+00 PERP,RACK1,TXNIP
1 TNFA SIG. VIA NFKB 6.57e-03 1.11e+00 FOS,DUSP1,CD44
7 APICAL JUNCTION 1.79e-05 1.20e+00 MYL9,MYH9,ACTB
7 APOPTOSIS 8.01e-06 1.23e+00 DCN,GPX3,GSN
7 COAGULATION 3.60e-07 1.27e+00 A2M,FN1,SPARC
7 COMPLEMENT 3.83e-04 1.17e+00 FN1,CSRP1,CLU
7 EMT 7.22e-12 1.29e+00 ACTA2,TAGLN,FN1
7 HYPOXIA 2.62e-05 1.19e+00 MYH9,DCN,BGN
7 IL2 STAT5 SIGNALING 7.48e-03 1.13e+00 COL6A1,AHNAK,TGM2
7 MITOTIC SPINDLE 1.39e-03 1.15e+00 FLNA,MYH9,GSN
7 MYC TARGETS V1 1.20e-03 1.15e+00 HSP90AB1,RPS6,RPLP0
7 MYOGENESIS 2.45e-11 1.29e+00 TAGLN,MYH11,COL6A2
7 TNFA SIG. VIA NFKB 1.39e-03 1.15e+00 NR4A1,RHOB,ZFP36
7 UV RESPONSE DN 1.91e-03 1.17e+00 COL1A2,IGFBP5,COL3A1

Table 1: Gene set enrichment results for GTEx eQTL experiment. EMT stands
for epithelial mesenchymal transition.
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