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ABSTRACT

Off-policy reinforcement learning (RL) has proven to be a powerful framework
for guiding agents’ actions in environments with stochastic rewards and unknown
or noisy state dynamics. In many real-world settings, these agents must operate
in multiple environments, each with slightly different dynamics. For example, we
may be interested in developing policies to guide medical treatment for patients
with and without a given disease, or policies to navigate curriculum design for
students with and without a learning disability. Here, we introduce nested policy
fitted Q-iteration (NFQI), an RL framework that finds optimal policies in envi-
ronments that exhibit such a structure. Our approach develops a nested Q-value
function that takes advantage of the shared structure between two groups of obser-
vations from two separate environments while allowing their policies to be distinct
from one another. We find that NFQI yields policies that rely on relevant features
and perform at least as well as a policy that does not consider group structure. We
demonstrate NFQI’s performance using an OpenAI Gym environment and a clin-
ical decision making RL task. Our results suggest that NFQI can develop policies
that are better suited to many real-world clinical environments.

1 INTRODUCTION

Off-policy reinforcement learning (RL) has proven to be a powerful framework for guiding agents’
actions in environments with stochastic rewards and unknown or noisy state dynamics (Hu et al.,
2020; Abbeel and Ng, 2004). Previous off-policy RL algorithms (Ernst et al., 2005a) learn a single
optimal policy designed to maximize agents’ long-term expected rewards. However, such a learn-
ing scheme is not always ideal. In many real-world settings, agents’ environments can be divided
into multiple groups for the same task. These groups may share rewards but have different state
dynamics, which often entails distinct optimal policies.

For example, say that we are designing a clinical decision support algorithm to treat ischemic stroke
in two groups of patients: one group has a large number of patients with healthy kidneys and the
other has a smaller number of patients with renal (kidney) disease. Note that there are similarities
in the treatment plans for these two groups; in particular, both sets of patients exhibit the effects
of disturbed blood flow to the brain due to stroke, and may require similar procedures. However,
patients with renal disease must follow a treatment plan that considers the inability of their kidneys
to properly filter out toxins. Traditional off-policy RL algorithms would learn a single policy that

1

ar
X

iv
:2

11
0.

02
87

9v
1 

 [
cs

.L
G

] 
 6

 O
ct

 2
02

1



does not consider the underlying presence of renal disease. This policy is likely to overfit to the
patients with functioning kidneys and overlook any known differences in optimal treatment plans.
In such scenarios, it would be beneficial to learn distinct policies for pre-defined groups of patients,
while leveraging any shared environmental structure and reward functions between the groups to
ensure a large and effective sample size.

To address this problem, we introduce nested policy fitted Q-iteration (NFQI), an off-policy RL al-
gorithm that extends fitted Q-iteration (FQI) (Ernst et al., 2005a) to account for nested environments.
Here, nested refers to an environment structured with two predefined groups that share some charac-
teristics; we will refer to the two groups as background and foreground. The background group often
contains far more samples. In the clinical example above, the background group includes patients
with healthy kidneys and the foreground group includes renal disease patients. Both groups share a
reward function, in this case successfully treating a stroke, but have different state dynamics.

The contributions of this paper to off-policy RL in the presence of nested environments are threefold:

1. We introduce NFQI, a supervised learning method that uses a nested Q-value function to
learn policies that are suited to nested environments. NFQI concurrently models both the
background and foreground datasets and is agnostic to modeling choices.

2. We develop a training procedure inspired by transfer learning (Zhu et al., 2021) to fit this
nested Q-value function and allow for group imbalance in the data.

3. We show that NFQI generates policies that outperform baseline methods on a set of quan-
titative and qualitative metrics and rely on relevant state features to do so.

This paper proceeds as follows. Section 2 discusses related work. In Section 3, we present a frame-
work for NFQI. In Section 4, we show results for NFQI in simulations and hospital data. Section 5
concludes and discusses potential future work.

2 RELATED WORK

Multi-task RL. The goal of multi-task RL is to train an agent to perform optimally at multiple
tasks (Caruana, 1997). Recent work has developed a method to efficiently learn a task-conditioned
policy π(a|s, z), where a is an action, s is a state, and z is a task embedding (Yang et al., 2020). This
approach has been observed to perform better than single-task learning because it uses the relation-
ships between tasks to improve performance for individual tasks (Sodhani et al., 2021). However,
the goals of multi-task RL differ from those of NFQI: Multi-task RL optimizes performance for
multiple tasks, each with a different Markov decision process (MDP), whereas NFQI is most appro-
priate to compare two environments with identical tasks and reward functions but different transition
dynamics. Additionally, the neural networks typically used for multi-task RL (Yang et al., 2020) re-
quire large training sets that are not always available in the medical and learning applications NFQI
was built to address. As such, these networks are likely to suffer from overparameterization in these
applications.

Meta RL. Meta RL algorithms train agents to solve new tasks efficiently based on experience with
other similar tasks. These approaches infer the task from a distribution p(T ) using a small set of
observations, rather than through an explicit task embedding. Much of the effort in meta RL is
focused on task design as opposed to model tuning, to make this inference process easier (Gupta
et al., 2020). Other work has shown that meta RL can be appropriate for offline RL (Mitchell et al.,
2021). Like multi-task RL, meta RL is different from NFQI because it trains agents to perform
multiple tasks with different state and action spaces. Unlike meta RL and multi-task RL, NFQI
expects all samples to arise from MDPs that have the same state and action spaces and follow
the same reward function. Since the dynamics of the two environments vary, the MDPs will have
different state transition functions, entailing different optimal policies for the groups.

Transfer learning. Transfer learning methods fine-tune a pre-trained model for a target dataset.
Often, the target dataset is relatively small; transfer learning using a larger and similar dataset may
result in better performance than training a model on just the target dataset (Bozinovski and Fulgosi,
1976). A common way to use these methods is to first train a neural network using the large dataset;
then, some of the network layers are frozen, and the rest of the network is fine-tuned by training on
the target dataset. In this way, the network is adapted to the target problem by learning a nonlinear
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map from the solution estimated for the larger dataset to the outcome for the target dataset. This
strategy can be applied to reinforcement learning (Zhu et al., 2021) and may improve resource usage
when the target dataset is small (Ash and Adams, 2019). The two datasets that NFQI uses are likely
to have substantial sample size imbalance; for this reason, we train the parameters for NFQI using a
procedure inspired by transfer learning.

3 METHODS

In this section we present nested policy fitted Q-iteration (NFQI), an off-policy RL algorithm for
environments that have a nested group structure. We first review Q-learning and fitted Q-iteration
(FQI) and then describe how to extend them to NFQI.

3.1 NOTATION AND PRELIMINARIES

A Markov decision process (MDP) is a discrete-time stochastic control process defined by a 4-
tuple (S,A, P,R), where S is the state space; A is the set of actions; P (st+1|st,at) is a function
governing state transition probabilities from time t to t + 1; and R : S → R is a reward function.
We assume a finite number of actions. A policy π : S → A is a mapping from states to actions that
describes an agent’s strategy within an MDP. In general, we assume st ∈ Rp and at ∈ Rq .

3.2 Q-LEARNING AND FITTED Q-ITERATION (FQI)

Fitted Q-iteration (FQI) is an off-policy RL algorithm based onQ-learning (Ernst et al., 2005a; Wier-
ing and Van Otterlo, 2012) that is designed to find an optimal policy for a given MDP. Q-learning
approaches define a functionQ : S×A → R that maps state-action pairs to an estimate of the cumu-
lative expected reward obtained by taking a particular action in a particular state. For a given policy
π at time step t, Q is defined asQπ(st, at) = rt+γEs′ [V

π(s′)], where the expectation is taken over
the possible next states given the transition probabilities P , V π is the value function correspond-
ing to π, and γ ∈ [0, 1] is a discount factor. The principle of Bellman optimality (Bellman, 1952)
states that a policy π? is optimal for a given MDP if and only if, for every state s ∈ S, it holds that
V π∗(s) = maxaR(s,a) + γEs′ [V

π∗(s′)]. Broadly, Q-learning algorithms attempt to approximate
the Q function using agents’ observed interactions with an environment, as the state transition func-
tion is typically not directly observable. This approximation is used to recommend optimal actions
for a given state. The data used to estimate the Q function typically consist of samples representing
steps taken within an MDP. In particular, a sample at time t is a 4-tuple (st,at, st+1, rt) representing
the agent’s state, chosen action, observed next state, and observed reward.

FQI approximates Q using an offline batch optimization approach (Ernst et al., 2005a). Specifi-
cally, it first posits a family of functions fθ(s,a), parameterized by θ, that are meant to approx-
imate the expected future reward after taking action a from state s. Common choices for f are
regression trees (Ernst et al., 2005a) and neural networks (Riedmiller, 2005). FQI then employs
an iterative algorithm that alternates between updating the current Q-values and fitting a regres-
sion problem that optimizes the parameters θ. Suppose we have a set of T samples from an
MDP, represented as a set of one-step transition tuples {(st,at, st+1, rt)}Tt=1. On step k of the
algorithm, FQI first updates its estimate of the Q-function according to the Bellman equation:
Q̂k(st,at) = rt+1 + γmaxa′∈A fθk−1

(st+1, a
′) for t = 1, . . . ,T . The second step minimizes

a loss measuring the discrepancy between the current Q-function estimate and the approximating
function f . The optimization problem is minθk

∑N
n=1 L

(
Q̂k(s

n
t ,a

n
t ), fθk(s

n
t ,a

n
t )
)
, where L(y, ŷ)

is the loss function comparing the “true” value y to predicted value ŷ. After K iterations, FQI’s
approximation to the optimal policy is given by π(s) = argmaxa′∈A fθK (s,a′).

3.3 NESTED POLICY FQI

We now introduce NFQI, an extension of FQI that estimates group-specific policies and accounts for
a nested group structure in the data. NFQI is a framework for off-policy reinforcement learning that
can use an arbitrary function class to approximate the Q function. Below, we describe the general
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NFQI framework with minimal assumptions about its parameterization. Additional experiments
show that neural networks are well suited to parameterize Q (see Appendix 6.2 and Appendix 6.5).

Recall that nested datasets are structured with two predefined groups – the background, and fore-
ground. To account for nested datasets, NFQI imposes structure on the family of functions used to
approximate the Q function. We define the approximating function f as

f(s,a, z) = gs(s,a) + 1{z=1}gf (s,a), (1)

where gs is a function modeling the shared Q-value structure between the background and fore-
ground samples, gf models foreground-specific structures, and 1{z=1} is an indicator function that
returns 1 when z = 1 (foreground) and 0 otherwise (background). Note that, despite the uncon-
ventional structure of the approximating function, it is still guaranteed to converge to the Bellman
optimal Q-value function; see Appendix 6.1 for further details.

NFQI uses a two-stage training procedure inspired by transfer learning (Appendix Algorithm 1).
In the first stage, we train gs using all of the foreground and background training samples, while
ignoring the foreground-specific model gf . Note that this stage is equivalent to setting z = 0 for all
samples (including foreground samples) temporarily. In the second stage, we train the foreground-
specific function gf using only foreground training samples. Under this approach, we first estimate
the shared structure of the network using both groups of samples in our training set, and we fine-tune
the network’s foreground predictions in gf using just the foreground training samples.

4 EXPERIMENTS

We demonstrate the performance of NFQI through the following experiments. Our experiments seek
to answer the following questions:

1. How well does a joint policy learned using NFQI perform in comparison to two policies
learned independently (one for each dataset) using FQI?

2. How does a joint policy learned using NFQI perform compared to a joint policy learned by
applying FQI or transfer learning to the union of background and foreground datasets?

3. Do the policies learned by NFQI rely on group-specific features to make predictions?
4. Are policies learned using NFQI able to achieve good performance when the sample size

of the background dataset is much larger than that of the foreground dataset?
5. When there is no group structure in the dataset and the application of NFQI is technically

inappropriate, does NFQI perform as well as standard FQI?

We present results from NFQI applied to a nested Cartpole environment (Brockman et al., 2016) and
to a clinical decision support task using MIMIC-IV, a benchmark electronic health record (EHR)
dataset (Johnson et al., 2020; Goldberger et al., 2000).

4.1 NESTED CARTPOLE

We first demonstrate the performance of NFQI using the Cartpole environment, as implemented in
the OpenAI gym (Brockman et al., 2016). The Cartpole environment consists of an unstable pole
attached to the top of a cart. An agent’s objective is to keep the pole balanced upright (in this case
for 1000 steps); this can be done by strategically applying a force on the cart to the left or right at
each time step (see Appendix 6.4 for the full MDPs and Appenxix 6.6 for training details).

In this study, we adapt the Cartpole environment to accommodate a nested structure. We call our
setup the “nested Cartpole” environment. The background environment is the original Cartpole
setup, while the foreground environment includes a constant force of c Newtons that pushes the cart
to the left. Unless otherwise specified, c = 5. Although the objectives for the two simulators is
identical, an agent will require a different policy to succeed in the background and foreground envi-
ronments because the dynamics of each system are different. Intuitively, an agent in the foreground
environment will need to develop a policy that counteracts the consistent leftward force.

To construct datasets we sample Cartpole episodes from the foreground and background environ-
ments. Each trajectory starts in a random state and chooses actions uniformly at random until the
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pole falls over. We use these trajectories to train NFQI and other off-policy algorithms. We evalu-
ated the performance of each policy by applying it in the nested Cartpole simulator and computing
the number of steps the cart maintains the pole in the goal state (with a maximum of 1000 steps).

4.1.1 NFQI IMPROVES PERFORMANCE WHEN THE FOREGROUND SAMPLE SIZE IS SMALL

We first sought to benchmark NFQI’s performance against FQI. To do so, we generated a training
set of trajectories that reflect the group imbalance that we expect to see in the nested setting. In par-
ticular, this dataset contains 200 background samples and 50 foreground samples. The foreground
environment has a force of c = 5 Newtons pushing the cart to the left. We trained FQI separately
on the background and foreground dataset; this yielded two independent policies. We fit NFQI with
both datasets using the procedure in Appendix Algorithm 1. We tailored the neural networks for
each algorithm so that they both use the same number of parameters (see Appendix 6.6), thus pre-
cluding either algorithm from having a more computationally expressive family of functions. We
evaluated each policy 50 times in each of the foreground and background environments, computing
the mean and confidence interval of these repetitions.

We find that the policy learned by NFQI performs substantially better than FQI in the foreground
environment and slightly better than FQI in the background environment (Fig. 1). FQI’s poor
performance in the foreground environment can likely be explained by the small training set size.
However, NFQI is able to leverage information from both foreground and background trajectories,
which allows it to overcome this limited sample size. This result suggests that NFQI is a viable
algorithm for learning optimal policies for two groups, especially when the training set sizes are
unbalanced between the groups.

(a) Background environment performance (b) Foreground environment performance

Figure 1: Performance of NFQI and FQI in the background (Panel a) and foreground (Panel b)
environments. The bar height represents the mean number of steps in the goal state (with a maximum
of 1000 steps); ticks represent 95% confidence intervals over 50 repetitions. NFQI trained with both
datasets performs better on test data from each of the environments, and substantially better for the
foreground test data.

4.1.2 NFQI OUTPERFORMS FQI AND TRANSFER LEARNING

Given that we want to train a policy using both datasets at the same time, we next compared NFQI
in the nested Cartpole environment to two other bespoke approaches: FQI trained jointly with tra-
jectories generated from both the foreground and background environments, and transfer learning.
The FQI and transfer learning algorithms find a single policy that does not consider a group label at
training or inference time (further details in Appendix 6.6).
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(a) NFQI performance, background dataset (b) NFQI performance, foreground dataset

Figure 2: NFQI outperforms related algorithms in a nested Cartpole environment. Increasing the
force on the cart (x-axis) increases the difference in the foreground and background environments.
As the environments become more distinct, NFQI enables agents to survive longer (y-axis) than FQI
and transfer learning for both the background (Panel a) and foreground (Panel b) data.

To evaluate the algorithms, we created eleven variations of the nested Cartpole environment,
each corresponding to a different value for the constant force applied in the foreground, c ∈
{0, 1, . . . , 10}. We evaluate each algorithm 15 times for each environment.

We found that NFQI outperforms FQI and transfer learning in this setting, especially as the fore-
ground and background environments become more different from one another (Fig. 2). When the
foreground and background environments were the same (i.e., c = 0), NFQI and FQI performed
similarly, while transfer learning performed slightly worse. As the background and foreground
dynamics became more distinct (i.e., as c increased), NFQI outperforms FQI. In particular, NFQI
maintained near-perfect performance in the background, and the performance degraded more slowly
in the foreground environment compared to competing approaches. These results suggest that NFQI
is able to model the differences between the background and foreground while exploiting shared
structure to improve its performance in both environments.

4.1.3 NFQI YIELDS POLICIES THAT RELY ON RELEVANT FEATURES

In addition to obtaining high-performance policies, it is also desirable to have these policies rely
on relevant features. To investigate this, we computed estimates of feature importance for both the
shared and foreground-specific model components using SHapley Additive exPlanations (SHAP),
a game theoretic approach to quantify the extent to which the features of each sample impact the
model’s predictions (Lundberg and Lee, 2017). Features with larger SHAP absolute values indicate
a greater predictive power. In the nested Cartpole environment, we compute SHAP values for each
of the five features used to estimate Q-values: cart position, cart velocity, pole angle, pole velocity,
and action.

We observed several patterns in the SHAP values for NFQI that agree with prior intuition. First, we
found that across all samples in both datasets, the features rank in the same order of importance. This
ordering corresponds to the mean SHAP value across samples. We see that cart position shows the
highest SHAP values, meaning it is the most predictive feature, while action is the least predictive
(Fig. 3). The model’s emphasis on cart position is likely due to the constant force being applied
in the foreground Cartpole environment; NFQI’s policy adapts to the relative importance of this
feature for both environments. We see that the foreground cart position SHAP magnitude is much
larger relative to that in the background, indicating that the foreground policy is compensating for
the foreground-specific dynamics, which include a constant force pushing the cart towards the left.
These results suggest that the policies found by NFQI rely on relevant features, as demonstrated in
part by the SHAP values.

4.1.4 NFQI IS ROBUST TO GROUP SIZE IMBALANCE

In many real-world settings, we have access to far less data in the foreground condition than in the
background. For example, it is much easier to collect medical records from healthy (background)
patients than from patients with a specific, chronic disease (foreground). Thus, it is important that
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Figure 3: SHAP plots for background (Panel a) and foreground (Panel b) samples from the Cartpole
environment. Each point represents the SHAP value for a single sample and single feature. The
magnitude of SHAP values is similar in both contexts, but foreground SHAP values are shifted
right, suggesting that the foreground policy is compensating for the foreground-specific dynamics.

nested RL methods be resilient to group imbalance and able to leverage the statistical strength of
the background data to estimate foreground-specific structure even when foreground data are rare.
In order to test NFQI’s performance with imbalanced data, we conducted an experiment with im-

Figure 4: NFQI is robust to imbalance in foreground and background sample sizes. We fix the total
number of training trajectories across both conditions to be 400, and we set the fraction of samples
that come from the foreground data to 10%, 20%, 30%, 40%, and 50% (where 50% corresponds
to balanced sizes). Error bars correspond to 95% confidence intervals. NFQI maintains superior
performance to FQI despite increasing levels of class imbalance. The foreground dataset is harder
to model than the background, but a nested policy better reflects the environments.

balanced group sizes in the nested Cartpole environment. Similar to previous experiments, we gave
the foreground different dynamics than the background by adding a constant leftward force of c = 5
Newtons. Here, we fix the total number of training trajectories across both conditions to be 400,
and we set the fraction of samples that come from the foreground data to 10%, 20%, 30%, 40%,
and 50% (where 50% corresponds to balanced sizes). We choose these fractions because they reflect
percentages of imbalance that we see in medical data. We fit NFQI as before, using a neural network
as our Q-value approximation function. For comparison, we also train FQI on the combined dataset
of background and foreground trajectories. We repeat this experiment 50 times.

NFQI outperforms FQI in this Cartpole setting with imbalanced group sizes. Specifically, across the
range of data imbalance, the policies found by NFQI perform better than the FQI policies in both
the background and foreground (Fig. 4). This is likely due to the fact that NFQI accounts for the
group structure in the dataset, while also exploiting the shared structure between the background
and foreground to increase the effective sample size. On the other hand, FQI must model the groups
with a single joint model, resulting in poor performance for both datasets. This result implies that
NFQI is successful in a common setting in which we have access to a small proportion of foreground
samples relative to the background samples.
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4.1.5 NFQI ONLY LEARNS DIFFERENT POLICIES IF THE ENVIRONMENTS ARE DIFFERENT

When there is no meaningful group structure in the data, we want NFQI to find the same optimal
policies for two (identical) groups. We demonstrate that NFQI behaves in this way by testing its
performance when there is no nested structure. We call this experiment the “structureless” test.
We first generate a dataset from a single simulator and give it false group structure by randomly
assigning group labels to samples. Then, we fit NFQI to this dataset and analyzed the policies for
each group, again using SHAP plots.

(a) Structureless test for the Cartpole environment.

Cart position 

Cart velocity 

Pole angle 

Pole velocity 

Action 

mean(|SHAP value|) 

SHAP values for structureless test 

(b) SHAP plot for the structureless test.

Figure 5: NFQI does not estimate practically different policies for two groups when there is no
group structure. Here, we find that NFQI finds policies that yield similar performance for both the
foreground and background group (Panel a) and that NFQI uses sample features similarly across
groups to predict rewards (Panel b).

We find that NFQI finds two policies that show similar behavior between the artificial background
and foreground datasets (Fig. 5a). The policies use the sample features similarly to make predictions,
with the same rankings of mean absolute SHAP values across artificial groups (Fig. 5b). These
results suggest that NFQI learns indistinguishable policies when the samples originate from the
same simulator with identical dynamics.

4.2 CLINICAL DECISION MAKING TASK USING ELECTRONIC HEALTH RECORDS (EHR)

After validating NFQI on the Cartpole environments, we next set out to test NFQI’s ability to iden-
tify more complex policies for patient treatment in a hospital setting. To do so, we leveraged elec-
tronic health record (EHR) data from the Medical Information Mart for Intensive Care (MIMIC)
series (Moody and Mark, 1996; Saeed et al., 2002; Johnson et al., 2016; 2020), which contains
de-identified records from patient hospital admissions.
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(a) FQI policy for non-renal patient. (b) FQI policy for renal patient.

(c) NFQI policy for non-renal patient (d) NFQI policy for renal patient

Figure 6: Visualizing FQI and NFQI policies for non-renal and renal patients. Heatmaps indicate
the policy’s repletion recommendation for patients with a given potassium and creatinine level.

In this experiment, we aim to identify a policy for maintaining healthy levels of electrolytes in
hospital patients. Determining when to prescribe – or “replete” – electrolytes is a difficult task; the
overuse of medication intended to balance electrolyte levels in patients has been linked to patient
mortality and complications post-surgery (Voldby and Brandstrup, 2016). Here, we use NFQI to
identify electrolyte repletion policies for two groups of intensive care unit (ICU) patients that require
different repletion strategies: a foreground group of 123 patients who have kidney disease (renal
patients) and a background group of 400 patients with healthy kidney function (non-renal patients).
Our goal is to determine the dosage of potassium to administer to a patient across the duration of
their hospital stay. We discretize the action space into three levels of repletion: no repletion, low
repletion, and high repletion.

Table 1: Evaluating RL algorithms using action matching. We evaluate FQI and NFQI on their
ability to predict the clinician’s actions on test samples from the foreground (FG) and background
(BG) datasets. We report accuracy (%) and F1 score across the three classes of repletion, both with
95 % confidence intervals.

Algorithm FG Accuracy (%) FG F1 Score BG Accuracy (%) BG F1 Score

FQI 36.09 ± 8.5 0.26± 0.05 27.7 ± 6.6 0.20 ± 0.03
NFQI 45.5 ± 12.2 0.25 ± 0.04 35.7± 6.3 0.26± 0.03

Building off previous RL approaches for this task (Prasad, 2020), we discretize patient trajectories
into 6-hour intervals. Each sample contains information about the patient’s vitals, labs, and pre-
scribed medicines during that interval, as well as comorbidities and metadata, such as age. The
reward function for this dataset is a manually parameterized function of the patient state and re-
pletion action that produces higher values when a patient’s measured potassium level is within a
healthy range (3.5 and 4.5 mmol/L), and lower reward values otherwise (Prasad, 2020). This reward
function must be constructed manually because there is no notion of reward in EHR records, and we
cannot derive an empirical one because it is not safe or ethical to evaluate a policy on patients (see
Appendix 6.7 for further details).

We fit NFQI and FQI to this dataset and examine the resulting policies, performing both quantitative
and qualitative analyses on our policies. We quantitatively evaluate a policy’s performance based on
its level of agreement with a doctor’s actions in test data (Tab. 1). We find that the policies estimated
using NFQI better reflect doctor’s actions than those estimated with FQI.

To give us better insight into why NFQI quantitatively outperforms FQI, we visualize the policies
qualitatively through heatmaps. We create synthetic patient states by densely sampling a grid with

9



r

Figure 7: NFQI mean SHAP values for renal (blue) and non-renal (red) patients. Y-axis shows
clinically relevant covariates.

two features, potassium and creatinine, while holding all other state features fixed. Creatinine levels
capture the kidney’s ability to filter out toxins (MayoClinic, 2021); higher levels of creatinine indi-
cate worse kidney function. Given a patient’s state features, we then use the trainedQ-value function
to select the action that generates the highest expected reward. NFQI recommends higher levels of
repletion for renal patients versus non-renal patients, especially when the patient’s potassium is be-
low the healthy range (MayoClinic, 2020) (Fig. 6). Moreover, NFQI’s policy recommends more
repletion for renal patients with higher creatinine level, indicating that electrolyte repletion should
increase as kidney function worsens. Meanwhile, FQI’s policy shows little difference between these
two patient groups, and recommends lower levels of repletion across the grid. These results suggest
that NFQI is able to discriminate between the patient groups and act according to prior intuition.

It is also imperative that NFQI policies are interpretable since the actions recommended can affect
other aspects of a patient’s physiology. Thus, we studied which features NFQI found most predic-
tive in the foreground and background policies. To do so, we computed SHAP values from each
group (Fig. 7). We find that NFQI identifies clinically relevant characteristics to inform both fore-
ground and background policies. Patients with renal disease tend to have higher creatinine values
and fluctuating electrolyte levels; the foreground policy for renal patients relies on potassium and
creatinine measurements more than the background policy. This suggests that the NFQI policies re-
flect the group-specific dynamics, while also sharing strength across the foreground and background
samples.

5 DISCUSSION AND FUTURE WORK

In this work, we present nested policy fitted Q-iteration (NFQI), an off-policy RL framework that
estimates optimal policies for nested environments. We demonstrate that NFQI policies outperform
those estimated from FQI and related approaches. When applied to simulated and medical data,
these policies are performant, robust to sample size imbalance, learn justifiable differences in the
datasets, and gracefully revert to FQI policies when there is no relevant group structure.

Several future directions remain. From a methods perspective, other approaches for the nested Q-
value function could be considered, such as Gaussian processes, random forests, and other neural
network architectures. This may improve the fit to new, larger datasets by increasing the expres-
siveness of the Q-value approximation function. Additionally, extending the nested model to allow
for multi-group structure may be useful when there are more than two groups in the data. This may
involve changing the structure of the approximating function f to incorporate other compositions of
gs and gf . In medical settings we anticipate future work in enabling NFQI as a clinical decision-
support tool (i.e., to recommend treatments with qualitative justification) to be used in conjunction
with a physician’s expertise.
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6 APPENDIX

6.1 BELLMAN OPTIMALITY OF NFQI’S Q-VALUE FUNCTION

In its original formulation, FQI was shown to converge to a Bellman-optimalQ-value function using
concepts from dynamic programming theory (Ernst et al., 2005b). Here, we show that NFQI reduces
to a particular type of FQI, and thus remains within this Bellman-optimal family.

Recall that FQI approximates the Q-value function with a function fFQI(s,a) taking a state-action
pair as input, while NFQI uses an approximating function fNFQI(s,a, z) that accepts an additional
argument z representing the sample’s group identity. Because z is an attribute of the environment,
we can think of it as a dimension of the state space that takes two possible values, and is constant
over a given trajectory. Thus, trivially we can augment the state as s̃ = (s>, z)> and describe NFQI
as a particular case of FQI where the approximating function is fFQI(s̃, a). We can write the additive
form of NFQI in Equation 1 as

fFQI(s̃,a) = gs(s,a) + 1{s̃p+1=1}gf (s,a)

where s is a p-vector, so the (p+ 1)th element of s̃p+1 is z.

6.2 NEURAL NETWORK Q-VALUE FUNCTIONS

Here, we present one instance of NFQI using a neural network as a nonlinear Q-value function
approximator.

For simplicity, we describe an implementation using a multilayer perceptron (MLP) with one hidden
layer; the nested network can be generalized to arbitrarily large architectures. Let σ be an element-
wise nonlinear activation function, and suppose that each state-action pair is p-dimensional, which
we write as a single vector xt = [st

>,at
>]> ∈ Rp. Then, the output of the network for a back-

ground sample is given by
f(st,at, 0) = σ(x>t W1s)w2s︸ ︷︷ ︸

gs(st,at)

,

where W1 ∈ Rp×k and w2 ∈ Rk are linear network weights separated by the nonlinear function
σ. Note that, because this is a background sample, we only apply gs to the sample. To model
foreground samples, we also include a foreground-specific additive component in the network. This
component, gf , only operates on foreground samples. The output of the network for a foreground
sample is given by:

f(st,at, 1) = σ(x>t W1s)w2s︸ ︷︷ ︸
gs(s,a)

+σ(x>t W1f )w2f︸ ︷︷ ︸
gf (st,at)

,

where W`s and W`f are the shared and foreground-specific weights for layer ` ∈ {1, 2}, respec-
tively.

In our experiments below, we use a variant of this type of neural network (6.6). We optimize the
network parameters θ = {W`s,W`f}L`=1 using a squared error loss function,

min
θ

N∑
n=1

(
Q̂(st,at)− fθ(st,at, zt)

)2
.

6.3 CODE

Before NFQI can be deployed in a particular application area, its hyperparameters, and possibly its
model structure, should be tuned. We release code with recommendations for tuning these settings.
All of our experiments were run on an internally-hosted cluster using a 320 NVIDIA P100 GPU
whose processor core has 16 GB of memory hosted. Our experiments used a total of approximately
100 hours of compute time. The code for our experiments is based on a prior implementation of
FQI1. We implement our nested neural network models in PyTorch (Paszke et al., 2019) and use an

1https://github.com/seungjaeryanlee/implementations-nfq

13



SGD-based optimizer (Saad, 1998). For all experiments, we use 80% of our data to train and 20%
of our data to test. We use a default learning rate of 10−3. We use the same hyperparameters for
nested- and group-label agnostic methods.

6.4 CARTPOLE ENVIRONMENT

The Cartpole environment contains a cart with an inverted pendulum pole on top, and an agent’s
goal in this environment is to move the cart left and right such that the pole remains upright and
the cart itself stays within the bounds of the window box. More formally, we can describe the
Cartpole environment as a Markov decision process (MDP) represented by a tuple (S,A, P,R).
Here, S = [x, ẋ, θ, θ̇]> is a four-dimensional state space, where x and ẋ are the cart’s position
and velocity, and θ and θ̇ are the pole’s angle and angular velocity; A = {a`, ar} is the action
space, containing actions for applying a force of 10 Newtons to the left or right; P is a deterministic
function determining state dynamics (based on simple Newtonian mechanics in this case); and R is
a reward function, which returns −1 when the pole falls or the cart exits the frame (at which point
the episode is terminated), and returns 0 otherwise. In the nested Cartpole environment, we adjust
the dynamics described by P to simulate different dynamics for the foreground and background
environments. Specifically, in the foreground environment, we include a constant leftward force
of c Newtons. In this case, choosing the action “push left” results in a leftward force of 10 +
c Newtons, while the action “push right” results in a rightward force of 10 − c Newtons. This
asymmetry is the driving difference between the background and foreground environments. As
such, each environment has the same state space, action space, and reward function, but a different
state transition function.

6.5 LINEAR MODEL Q-VALUE FUNCTION

We tested the effect of the choice of the approximating function f on the performance of the NFQI
framework. To do so, we fit NFQI and FQI using a linear model and a neural network in the Cartpole
environment.

For the linear model, we consider gs and gf to be linear models in Equation equation 1. We represent
each sample by a vector containing its state and action, [s>t ,a

>
t ]
>, where st is the state vector and

at is the action vector. We assume a finite action space throughout this study. Then, we have the
following model:

gs(st,at) =

[
st
at

]>
βs + 1>β0s + ε

gf (st,at) =

[
st
at

]>
βf +

[
st
at

]>
βs + 1>β0f + ε,

where 1 represents a column vector of ones, and ε is zero-mean random noise. Here, the coefficients
βs and βf capture the background and foreground’s (linear) relationship between state and action
pairs, and expected reward. The terms β0s and β0f capture context-specific intercepts. Note that
this approach is similar to a hierarchical model approach (McLean et al., 1991; Allenby et al., 2005).

As expected, we find that the linear model is unable to successfully find a policy that solves the
Cartpole environment (Figure 8). In contrast, a neural network is able to find a good policy most
of the time. We anticipate this is because a neural network can approximate functions that are
nonlinear and that the Cartpole environment requires a nonlinear function to approximate reward.
We also expect the MIMIC-IV environment to require a nonlinear function. For this reason, we
consider neural networks throughout this study.
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Figure 8: Performance of FQI in the Cartpole environment using two different approximation func-
tions. Performance of each model is measured as the number of steps before the pole fell or the cart
exited the frame. Performance is shown here for a linear model and a neural network.

Figure 9: A neural network-based version of NFQI outperforms related algorithms and a linear
model-based NFQI in a nested Cartpole environment. Linear NFQI is likely underparameterized for
the Cartpole problem in both the background (Panel a) and foreground (Panel b) environments.

15



Algorithm 1: NFQI training procedure
Randomly initialize shared and foreground-specific model parameters θs, θf ;
while background loss Lb not converged do

Compute Lb;
Update θs using SGD;

end
while foreground loss Lf not converged do

Compute Lf ;
Update θf using SGD;

end
πb(s)← argmaxa′ gs(s,a

′) // background policy
πf (s)← argmaxa′ gf (s,a

′) // foreground policy
return πb, πf

6.6 ALGORITHMS

We use three algorithms in our experiments: NFQI, FQI, and transfer learning. We use the same
network with the same number of parameters for all three algorithms. The difference between the
algorithms can be explained using the training procedures as described below. The network structure
follows:

input = s, a, z
x = [s, a] −→ Linear(10) −→ ReLU −→ Linear(5) −→ ReLU

x shared = x −→ Linear(1)
x fg = x −→ Linear(10) −→ ReLU −→ Linear(5) −→ ReLU −→ Linear(1)

output = x shared + z × x fg

With the exception of the imbalanced dataset experiment (Section 4.1.4), all algorithms use the same
number of training and test samples; the network is trained using only training samples, and tested
using only test samples.

To train NFQI, we follow Algorithm 1. To perform inference, we input a state-action pair and the
group label to the network. Depending on the group label, the network uses either the shared layers
or both the shared and foreground layers to estimate a Q-value. To train FQI, we do not consider the
group label of the sample. The network uses all of the layers to estimate a Q-value for each training
sample. This is as if all of the group labels were 1.

We also do not consider the group label when training a transfer learning algorithm. We first use
the background training samples to train the shared layers in our network. Then, we freeze the
shared layers and use the foreground training samples to train the foreground specific layers. When
performing inference, this network does not consider group label; as such, the network uses every
layer to estimate a Q-value for a sample.

All of our algorithms use a mini-batch SGD optimizer and an MSE loss. A random seed is used
to ensure reproducibility. We evaluate the network on one test sample for every train sample in the
batch; if the previous three evaluations were successful (i.e., the pole in the Cartpole environment
stayed up for 1000 steps), we deem the layers converged.

6.7 MIMIC-IV ENVIRONMENT

The MIMIC-IV EHR dataset was collected between 2008 and 2019 from the Beth Israel Deaconess
Medical Center in Boston, Massachusetts. The latest version of this dataset, MIMIC-IV, contains de-
identified data from over 524,000 distinct hospital admissions and over 257,000 patients (Johnson
et al., 2020). Our preprocessing steps follow the framework suggested by prior work (Prasad, 2020;
Mandyam et al., 2021).

Our background dataset consists of 400 patients which healthy kidneys and our foreground dataset
contains 123 patients with renal disease. Intuitively, electrolyte repletion policies must account
for kidney function. For example, patients who are admitted for a renal condition have a baseline
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imbalance of electrolytes and receive electrolyte repletion much differently than patients who have
functioning kidneys.

Below is a list of all patient characteristics used in our experiments.

Table 2: Features used to predict electrolyte repletion.

Feature Description
Age Age of patient at admission
Gender Gender discretized to male/female
Expired Binary flag indicating whether patient is dead/alive
Patient Weight Patient Weight (kg)
Length of Stay Length of patient’s stay (days)
Heart Rate Heart Rate (bpm)
Respiratory Rate Rate of breathing (breaths per minute)
Oxygen Saturation Oxygen saturation in blood (%)
Temperature Body temperature (◦F)
Systolic BP Systolic Blood Pressure (mmHg)
Diastolic BP Diastolic Blood Pressure (mmHg)
Potassium (IV) Potassium administered through IV (mL)
# Hours Potassium (IV) # hours potassium is administered through IV
Potassium (nonIV) Potassium administered orally (mg)
# Hours Potassium (nonIV) # hours potassium is administered orally
Potassium Potassium measured in blood
Calcium (IV) Calcium administered through IV (mL)
# Hours Calcium (IV) # hours calcium is administered through IV
Calcium (non-IV) Calcium administered orally (mg)
# Hours Calcium (nonIV) # hours calcium is administered orally
Calcium Calcium measured in blood
Phosphate (IV) Phosphate administered through IV (mL)
# Hours Phosphate (IV) # hours phosphate is administered through IV
Phosphate (non-IV) Phosphate administered orally (mg)
# Hours Phosphate (nonIV) # hours phosphate is administered orally
Phosphate Phosphate measured in blood
Magnesium (IV) Magnesium administered through IV (mL)
# Hours Magnesium (IV) # hours magnesium is administered through IV
Magnesium (non-IV) Magnesium administered orally (mg)
# Hours Magnesium (nonIV) # hours magnesium is administered orally
Magnesium Magnesium measured in blood
Sodium Sodium measured in blood
Vasopressors Administered to constrict blood vessels
Beta Blockers Administered to reduce blood pressure
Calcium Blockers Administered to reduce blood pressure
Loop Diuretics Administered to treat hypertension, edema
Insulin Administered to promote absorption of glucose from blood
Dextrose Administered to increase blood sugar
Oral Nutrition Orally administered nutrition supplements
Parenteral Nutrition Non-orally administered nutrition supplements
Total Parenteral Nutrition IV-based fluids used for nutrition
Dialysis Binary indicator of dialysis procedure
Blood Transfusion Binary indication of red blood cell transfusion
Coronary Artery Disease Binary indication of disease
Atrial Fibrillation Binary indication of disease
Congestive Heart Failure Binary indication of disease
Chronic Kidney Disease Binary indication of disease
Renal Disease Binary indication of a non-chronic kidney disease
Paralysis Binary indication of loss of ability to move
Parathyroid Binary indication of disease
Rhabdomyolysis Binary indication of disease
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Table 2: Features used to predict electrolyte repletion.

Feature Description
Sarcoidosis Binary indication of disease
Alanine Aminotransferase Measure in blood
Anion Gap Measure in blood
Blood Urea Nitrogen Measured in blood
Creatine Phosphokinase Measured in blood
Hemoglobin Measured in blood
Glucose Measured in blood
Creatinine Measured in blood
Lactic Acid Dehydrogenase Measured in blood
White Blood Cell Count measured in blood

The Markov decision process (MDP) for this MIMIC-IV environment is a tuple (S,A, P,R). Here,
S is a 61-dimensional vector containing information corresponding to each feature in Tab. 2;
A = {[0, 0], [0, 10], [10, 0]} is the action space, each action corresponding to no repletion, low
repletion and high repletion respectively; P contains the (unknown) state transition probabilities
guiding a patient’s state dynamics during their hospital visit; and R is a reward function, which
returns a value based on whether the patient’s observed potassium level is outside the normal potas-
sium range and the cost of repletion. R is the sum of a four dimensional vector; each element in
this vector corresponds to the cost of oral repletion, the cost of intravenous repletion, a penalty for
the patient’s potassium level being too high, and a penalty for the patient’s potassium level being
too low, respectively. The reward function can be written as rt = w · φt(st, at, st+1) where φ is a
four-dimensional vector function such that:

φt(·) =


−1atroute[oral]

−1atroute[intravenous]

−1st+1[K]>Kmax
· 10

(
1 + e−σ(K−Kmax−1)

)−1
−1st+1[K]>Kmax

· 10
[
1−

(
1 + e−σ(K−Kmax−1)

)−1]
 ∈

{0,−1}{0,−1}
(−10, 0)
(−10, 0)

 .
Here, K is the known measurement of potassium, and Kmax and Kmin define the upper and lower
bounds of the target potassium range, respectively. The first two elements of the reward vector
correspond to whether the repletion was administered orally or through an intravenous line. For our
experiments, we use w = [1, 1, 1, 1].
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