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Abstract

Gaussian processes (GPs) are pervasive in functional data analysis, machine learning, and spatial
statistics for modeling complex dependencies. Modern scientific data sets are typically heteroge-
neous and often contain multiple known discrete subgroups of samples. For example, in genomics
applications samples may be grouped according to tissue type or drug exposure. In the modeling
process it is desirable to leverage the similarity among groups while accounting for differences
between them. While a substantial literature exists for GPs over Euclidean domains Rp, GPs
on domains suitable for multi-group data remain less explored. Here, we develop a multi-group
Gaussian process (MGGP), which we define on Rp × C , where C is a finite set representing
the group label. We provide general methods to construct valid (positive definite) covariance
functions on this domain, and we describe algorithms for inference, estimation, and prediction.
We perform simulation experiments and apply MGGP to gene expression data to illustrate the
behavior and advantages of the MGGP in the joint modeling of continuous and categorical vari-
ables.

1 Introduction

Gaussian processes (GPs) are widely used in functional data analysis, machine learning, and spa-

tial statistics due to their flexibility and expressiveness in modeling complex dependent data (Ras-

mussen and Williams, 2005; Stein, 1999; Gelfand et al., 2010; Cressie and Wikle, 2011; Banerjee

et al., 2014). For example, in nonparametric regression models, GPs are commonly used to model

unknown arbitrary functions; in Bayesian contexts, they act as priors over functions (Ghosal and

Van der Vaart, 2017). In spatial statistics, GPs are widely used to model spatial dependencies

in geostatistical models and to perform spatial prediction or interpolation (“kriging”) (Matheron,

1963). The GP framework may also be adapted to deal with discrete outcomes and applied to clas-

sification problems (Bernardo et al., 1998). GPs are also being increasingly used in deep learning

and reinforcement learning applications (Damianou and Lawrence, 2013; Deisenroth et al., 2013).

Code for the model and experiments is available at https://github.com/andrewcharlesjones/multi-group-GP.
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A GP is determined by its covariance function, also known as the covariogram or Mercer kernel,

which for statistical modeling purposes is specified to be a real-valued positive definite (PD) function

K : X×X → R. Most commonly, GPs are defined over the Euclidean domain X = Rp, where p is the

dimension of the input samples. However, in many cases, data sets admit a “multi-group” structure,

where each sample belongs to one of k known groups. For example, biological measurements

might come from multiple tissue types or cell types (Consortium et al., 2020; Regev et al., 2017);

geospatial data might be collected from multiple locations defined by discrete demarcations, such

as state or country borders (Pan et al., 2020); and census data comes from people of different races,

ethnicities, and genders (U.S. Census Bureau, 2020). Models built on Euclidean domains may be

unsuitable for such data because they are not designed to capture the discrete nature of the groups.

Although inference for GPs on non-Euclidean manifolds and graphs has recently attracted attention

in statistics (Niu et al., 2019; Dunson et al., 2020; Li et al., 2021) and machine learning (Borovitskiy

et al., 2020, 2021), the multi-group setting remains largely unaddressed.

As a motivating example (which we will explore in depth in this paper), consider the data

collected by the Genotype-Tissue Expression (GTEx) consortium (Consortium et al., 2020). The

GTEx data contain measurements from thousands of biological samples across hundreds of human

donors, and these samples are collected from up to 52 tissue types for each donor. The measurements

include gene expression and genotype profiles, along with a variety of additional metadata, including

demographic variables and tissue health measurements. In this dataset, each tissue type constitutes

a “group.” While each tissue type has a unique genomic environment, some tissue types are

expected to be similar to one another. For example, a subset of the tissue types correspond to

subregions of the brain, and another subset of tissue types correspond to subregions of the heart.

In these cases, it may be beneficial to share information across similar tissue types when analyzing

dependencies in the data.

For flexibly modeling k-group data, we seek a stochastic process over Rp × C to drive the

inference, where C = {c1, · · · , ck} is a finite set representing the group labels. To begin, we

identify three existing approaches for applying GPs to multi-group data: the Separated GP (SGP),

the Union GP (UGP), and the Hierarchical GP (HGP)—all of which are defined over Euclidean

domains. The SGPs and UGPs are straightforward applications of GPs that effectively ignore the

group structure and either model the groups separately (SGP) or combine samples across groups

and ignore the known structure (UGP). These “separated” and “union” modeling approaches are

often used in practice for their simplicity and extend beyond the context of GPs (Consortium et al.,

2020; Tsherniak et al., 2017). We briefly describe these three models below.
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1. The Separated GP (SGP) assumes independence across groups. Thus, the across-group cor-

relation is set to zero: K((x, ci), (x
′, cj)) = 0 if i 6= j. The SGP is equivalent to modeling each

group with a separate, independent GP.

2. The Union GP (UGP) assumes the same dependencies within and across groups so the co-

variance function does not depend on the members of C , i.e., K((x, ci), (x
′, cj)) = K0(x, x′).

It is equivalent to modeling all groups jointly with a single GP.

3. The Hierarchical GP (HGP) accommodates both across- and within-group dependencies,

where all within-group and across-group dependencies are assumed to be identical. Here,

K((x, ci), (x
′, cj)) = K0(x, x′) + 1{ci=cj}K1(x, x′), where K0 and K1 are real-valued positive

definite functions (Park and Choi, 2010; Hensman et al., 2013).

Each of the above models build covariance kernels based upon a standard GP over a Euclidean

domain. While each of the above models offers a reasonable modeling solution for multi-group data,

they offer limited flexibility. Specifically, the conditions implicit in the above models are restrictive

and fail to model heterogeneity in the between-group dependencies. As a consequence, when the

model is misspecified, the performance of these GPs will be unsatisfactory, especially when the

overall sample size is small or the groups are unbalanced in terms of sample size.

In this manuscript we introduce a class of Multi-Group Gaussian Process (MGGP) models

as a flexible tool to model complex dependent grouped data. A specific contribution here is the

construction of positive definite covariance functions defined over X := Rp × C that will provide a

valid specification for the MGGP over Rp × C . Specifically, our proposed MGGP framework will

offer the following benefits compared to existing models:

1. The MGGP flexibly models multi-group heterogeneity, leveraging varying levels of similarity

between groups;

2. The MGGP is robust to model misspecification;

3. The MGGP can make use of domain/prior/expert knowledge about which groups are expected

to be similar to one another;

4. The MGGP outperforms existing GPs, especially when the overall sample size is limited or

when group-specific sample sizes are unbalanced;

5. The MGGP does not depend on a sophisticated model; instead, the multi-group structure is

encoded in the covariance function, which enables the seamless use of existing methods for
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estimation and inference in GPs;

6. Given that the MGGP is a valid Gaussian process, it is compatible with the growing set of

existing scalable Bayesian inferential methods for GPs (see, e.g., Banerjee, 2017, and references

therein for a review).

Much work in Bayesian statistics has focused on the challenge of joint modeling of continuous

and categorical variables. One approach builds hierarchical models to partition the data based on

each category and share strength across observations through the hierarchical structure (Dunson

et al., 2003; Dunson, 2000; Teimourian et al., 2015; Ru et al., 2020). Other approaches use ad-

ditive effects for each category (Schulam et al., 2015). More recent work uses Dirichlet process

mixture models with both multinomial and Gaussian data likelihoods, which includes both addi-

tive mean effects and mixture components to effectively combine the above two strategies to model

dependencies between continuous and categorical features (Murray and Reiter, 2016). Our MGGP

model adds to this literature by avoiding additive, hierarchical, and mixture models entirely, and

instead explicitly modeling the dependencies within and among the two types of variables through

a non-Euclidean covariance function with a flexible Gaussian process prior. The flexibility of the

Gaussian process allows straightforward conditioning on multiple categorical partitions, offering a

closed form conditional posterior. This is especially useful when some groups have extremely small

sample sizes, and the posterior distribution can exploit dependencies between groups.

The paper is organized as follows. Section 2 presents a model-based inferential framework for

MGGP regression models. We turn to the construction of the MGGP using valid covariance func-

tions on Rp×C in Section 3 considering separable and inseparable functions in Sections 3.1 and 3.2,

respectively, and show that the three aforementioned GPs for multi-group data are special cases

in Section 3.3. In Section 4 we demonstrate our proposed method through simulation experiments

and an application to a large gene expression data set. Section 5 concludes the article with a brief

discussion. Mathematical details, including all proofs, are presented in the Appendix.

2 Multi-Group Gaussian Process Regression Models

We envision a Multi-Group Gaussian Process (MGGP) regression model, where our dependent

variable y(x; cj) is generated from a latent stochastic process over Rp × C for inputs x ∈ Rp and

group j as

y(x; cj) = µ(x; cj) + Z(x; cj) + ε(x; cj) , ε(x; cj)
ind∼ N(0, τ2

j ) , (1)
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where µ(x; cj) is a mean function, Z(x; cj) is a zero-centered latent process and ε(x; cj) is a zero-

centered white-noise process capturing measurement error or fine-scale variation with group-specific

variances. The mean function can be further modeled, if deemed appropriate, as µ(x; cj) =

fj(x)>βj , where fj(x) is a qj × 1 vector of design variables possibly, but not necessarily, depending

on x, and the βj variables are qj × 1 vectors of group-specific regression coefficients. This specifica-

tion accommodates predictors or other explanatory variables that need neither be continuous nor

reside within Rp.

The model in Equation (1) can be regarded as a semiparametric regression model with a para-

metric specification offered by the mean function and a nonparametric specification offered by the

latent process. Our focus in this paper, however, is not so much on modeling µ(x; cj), which can be

built from customary parametric linear model specifications, as it is on the latent stochastic process

Z(x; cj) : χ −→ R, where χ = Rp×C . We will specify Z(·; ·) to be a GP with zero mean and a covari-

ance kernel K((x; cj), (x
′; cj′)) : χ × χ −→ R so that K(((x; cj), (x

′; cj′)) = cov(Z(x; cj), Z(x′; cj′))

is a positive-definite covariance function. In general, we consider settings where data arise over a

finite, possibly unbalanced, set of points {(xi; cj)} for i = 1, 2, . . . , nj and j = 1, 2, . . . , k. Thus,

each group can have a different number, nj , of inputs. Given the covariance kernel, the realiza-

tions of the process over the finite set of points is the n × 1 vector Z = (Z>1 , . . . , Z
>
k )>, where

n =
∑k

j=1 nj and Zj = (Z(x1; cj), . . . , Z(xnj ; cj))
> follows a multivariate Gaussian distribution

with an n× 1 zero vector as mean and an n×n covariance matrix K, whose (j, j′)th block is given

by the nj × nj′ matrix Kjj′ whose (i, i′) element is given by K((xi; cj), (xi′ ; cj′)) for i = 1, 2, . . . , nj

and i′ = 1, 2, . . . , nj′ .

Equation (1) leads to likelihood-based inference and can be extended to a Bayesian framework.

Assuming, for elucidation purposes only, that µ(x; cj) = fj(x)>βj , our Bayesian MGGP model

specifies the joint distribution of the parameters and the data as

p({τ2
j }, θ, {βj})×N(Z | 0,Kθ)×

k∏
j=1

nj∏
i=1

N(y(xi; cj) | fj(xi)>βj + Z(xi; cj), τ
2
j ) , (2)

where we now index the process covariance matrix by θ to denote parametric specifications for the

covariance kernel, and p({τ2
j }, θ, {βj}) is the prior on the model parameters. Inference on these

parameters and the latent process proceeds by drawing samples from the posterior distribution

p({τ2
j }, θ, {βj}, Z | {y(xi; cj)}, {fj(xi)}), which is proportional to Equation (2).

Sampling from the joint posterior distribution including the process realizations Z will be chal-

lenging due to the dimension of Z. Exploiting the Gaussian likelihood, we work with the collapsed
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likelihood after integrating out Z from Equation (2), which yields the posterior distribution

p(τ, θ, β | y, F ) ∝ p(τ, θ, β)×N(y |Fβ,Kθ +Dτ ) , (3)

where y is the n×1 vector of observations, y(xi; cj), constructed analogous to Z, F is an n×q block-

diagonal matrix, q =
∑k

j=1 qj , with nj × qj blocks Fj = (fj(x1), . . . , fj(xnj ))
>, β = (β>1 , . . . , β

>
k )>

is the q× 1 vector of stacked regression coefficents, τ = {τ2
j } is the collection of measurement error

variances and Dτ is the n × n diagonal matrix with τ2
j Inj as nj × nj diagonal blocks. Markov

chain Monte Carlo (MCMC) algorithms operate much more efficiently in sampling from Equation

(3) because of the reduced parameter space than from Equation (2). Once posterior samples of

{τ, θ, β} are collected, we recover the posterior samples for the latent process from p(Z | y, F ) =

E[p(Z | {τ, θ, β}, y, F )], where the expectation E[·] is taken with respect to the posterior distribution

in Equation (3); Monte Carlo sampling will draw one Z ∼ p(Z | {τ, θ, β}, y, F ) for each posterior

draw of {τ, θ, β}. This is straightforward because p(Z | {τ, θ, β}, y, F ) is of the form N(Mm,M),

where M−1 = K−1
θ + D−1

τ and m = y − Fβ, and the draws need to be made using only the

post-convergence samples of {τ, θ, β}.

To estimate the latent process at an unobserved input x0 ∈ R for a given group cj ∈ C , we

evaluate the Bayesian posterior predictive distribution

p(Z(x0; cj) | {y(xi; cj)}, {fj(xi)}) ∝
∫
p(Z(x0; cj) |Z, θ)× p(Z, {τ, θ, β} | y, F )dZd{τ, θ, β} , (4)

where we have used the conditional independence p(Z(x0; cj) |Z, {τ, θ, β}, y, F ) = p(Z(x0; cj) |Z, θ)

derived from the hierarchical model in Equation (2). We can sample from Equation (4) by

drawing one Z(x0; cj) ∼ p(Z(x0; cj) |Z, θ) for each drawn posterior sample of Z and θ, where

p(Z(x0; cj) |Z, θ) is Gaussian with mean Kθ((x0; cj); ·)>K−1
θ Z, where Kθ((x0; cj); ·) is the n × 1

vector with elements Kθ((x0; cj), (xi, cj′)) for j′ = 1, . . . , k and i = 1, 2, . . . , nj′ , and variance

Kθ((x0; cj), (x0; cj))−Kθ((x0; cj); ·)>K−1
θ Kθ((x0; cj); ·). Finally, to predict the response at (x0; cj),

we can sample from the predictive distribution p(Y (x0; cj) | y, F ) by drawing one Y (x0; cj) ∼

N(fj(x0)>βj + Z(x0; cj), τ
2
j ) for each posterior sample of {βj , τ2

j } and Z(x0; cj), found as above.

Our theoretical contribution includes the construction of valid positive-definite functions to

serve as Kθ((x; cj), (x
′; cj′)). This is crucial for the above inferential framework as it ensures that

the matrix Kθ in Equation (2) will be positive definite for any finite set of distinct elements,

observed or unobserved, in R × C . A key advantage of driving the inference through a latent

process is the convenience of predictive inference for the process and the response at new inputs.
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A specific contribution of the proposed fully process-based framework is that it allows us to carry

out predictive inference even for new unobserved groups. For example, if cj ∈ C for some j is a

new group with no observations, sampling from the posterior predictive distributions of Z(x0; cj)

and Y (x0; cj) can be executed as described above, possibly with appropriate modeling adjustments

on the prior for τ2
j . Hence, we turn to the construction of valid MGGP covariance kernels.

It is worth pointing out the computational bottleneck arising from the dimension of Kθ in GP

models for large data sets. There is, by now, a substantial literature on various approaches that

build scalable models for massive data sets by building low-rank or sparsity-inducing processes (see,

e.g. Wikle, 2010; Banerjee, 2017; Heaton et al., 2019, for expository treatments of such processes) out

of any valid covariance kernel. While scalable processes is not the focus of the current manuscript, it

is important to point out that our approach of constructing MGGPs using valid covariance kernels

renders the resulting processes as “scalable-ready” since low-rank or sparsity-inducing MGGPs can

be easily derived using current methods.

3 Multi-Group Gaussian Processes

We focus upon building MGGPs using positive-definite covariance kernels. We start with simpler

separable specifications and proceed to derive richer and more flexible alternatives.

3.1 Separable multi-group GP

We start with a simple case where the covariance function over Rp × C is separable.

Definition 1. K is said to be separable if K((x, ci), (x
′, cj)) = KRp(x, x

′)KC (ci, cj), where KRp

and KC are over Rp and C .

First, observe that K is positive definite if and only if both KRp and KC are positive definite.

Since GPs over Rp have been thoroughly studied, we focus on covariance functions over KC , or

GPs over a categorical set. Also, C being finite, any function on C × C is completely determined

by C ∈ Rk×k : Cij = KC (ci, cj).

Proposition 1. KC is positive definite if and only if C is a positive definite matrix.

The above result implies that it will suffice to find a positive definite function on Rp and

a positive definite matrix C ∈ Rk×k to construct a separable positive definite function on X .

Homogeneous kernels arise as a special case.

7



Definition 2. A function KC : C ×C → R is said to be homogeneous if KC (ci, cj) = K0(1{ci 6=cj})

for some function K0 on {0, 1}.

A homogeneous GP is completely determined by two scalars: a := KC (ci, ci), b := KC (ci, cj)

where i 6= j, which represent the within-group correlation and across-group correlation, respectively.

Without loss of generality, we assume a = 1; otherwise, we can rescale KC . In this case, all within-

group and between-group correlations are the same. A homogeneous GP is appropriate if we only

need to distinguish pairs of observations that are in the same group from those in different groups,

while the specific group identities are irrelevant. Equivalently, K is homogeneous if K is isotropic

with respect to the discrete metric d(ci, cj) = 1{ci 6=cj}.

Corollary 1. Let KC be homogeneous, then KC is positive definite if and only if − 1
k−1 ≤ b ≤ 1,

where b = KC (ci, cj) with i 6= j.

The inequality − 1
k−1 ≤ b ≤ 1 implies the across-group correlation should not dominate the

within-group correlation, which is intuitively reasonable.

Separable models provide computational benefits because the resulting covariance matrix for Z

can be expressed as a Kronecker product of KR and KC . However, separable covariance functions

tend to have “ridges” or discontinuities (Stein, 2005) that can lead to poorer inference. They also

assume that the same covariance structure (KRp) is retained for all groups, which seems unduly

restrictive in terms of accommodating associations of the latent process for different pairs of inputs

in Rp × C . Hence, we turn to inseparable cases in the next section.

3.2 Inseparable multi-group GP

3.2.1 Isotropic MGGP

In order to discuss “isotropic” GPs on Rp × C , we need to endow C with more structure. To

minimize assumptions, we introduce a metric d on C so that (C , d) is a metric space.

Definition 3. Given two metric spaces (Y, d) and (Y ′, d′), a GP on Y × Y ′ is said to be semi-

isotropic if K((x1, x
′
1), (x2, x

′
2)) = K0(d(x1, x2), d′(x′1, x

′
2)).

Intuitively, a semi-isotropic GP is isotropic in each component Rd and C separately. Isotropic

functions imply semi-isotropic, but the other direction does not hold in general. In practice, d is

usually obtained by domain knowledge, including prior, exterior, or expert knowledge. For exam-

ple, if C = {North Carolina, New Jersey, California}, then the distance can be the geographical

distance between the center of these states. As another example, if C contains a set of human tissue
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types, prior biomedical knowledge might lead to candidates for d; two tissue types from different

parts of the same organ, say the brain, might be expected to be more similar to each other than

a brain tissue and liver tissue. When C is a weighted graph, the graph distance serves as a valid

metric (Bouttier et al., 2003). If no domain knowledge is available, we suggest using a default

noninformative distance: dij = 1− δij , i.e., all groups are equidistant.

Recall that the restriction of a GP to a subset of the original domain is again a GP (Rasmussen

and Williams, 2005). Motivated by this fact, if we can isometrically embed C to an Euclidean

space Rp′ by some mapping ι : C → Rp′ such that

dij := d(ci, cj) = ‖ι(ci)− ι(cj)‖,

then an isotropic GP on Rp′ induces a GP on the image ι(C ). Our next result creates a large family

of semi-isotropic covariance functions on X = Rp × C .

Theorem 1. Let ι be an isometric embedding from (C , d) to Rp′. Then, if ϕ : R+ → R is a

completely monotone function and ψ : R+ → R+ is a positive function with a completely monotone

derivative, then:

K((x, ci), (x
′, cj)) =

σ2

(ψ(‖ι(ci)− ι(cj)‖2))p/2
ϕ

(
‖x− x′‖2

ψ(‖ι(ci)− ι(cj)‖2)

)
. (5)

is a valid covariogram, where σ2 > 0 is the spatial variance. In particular, if d(ci, cj) = 1 − δij is

the discrete metric, and if ϕ : R+ → R is a completely monotone function, then

K((x, ci), (x
′, cj)) =

σ2

α
p
2

(1−δij)
ϕ

(
‖x− x′‖2

α1−δij

)
(6)

is a valid covariogram, where σ2 ∈ (0, 1] is the spatial variance and α > 0 controls the interaction

between Rp and C .

There are two remaining questions to fully define the covariance function: How do we determine

p′? and how do we find the embedding ι? In fact, the explicit formula of ι is not necessary to define

the covariance function since only d is involved in Equation (5). Therefore, as long as d is known,

the above covariance functions are well-defined. If one is interested in the embedding ι itself, the

following lemma answers the first question:
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Lemma 1 (Maehara (2013)). Let G ∈ Rk×k be the Gram matrix of d, that is,

Gij =
1

2
(d(c1, ci) + d(c1, cj)− d(ci, cj)) .

Then there exists an isotropic embedding ι : C → Rp′ if and only if G is positive semi-definite with

rank at most p′.

For simplicity, we choose p′ = rank(G) to reduce the dimension. For the second question, such

an ι can be obtained using existing methods in closed-form, including a power transform (Maehara,

2013; Hopkins, 2015). If C has a graph structure, then graph embedding algorithms apply here,

see Deza and Laurent (2009); Frankl et al. (2020) for more details.

The solution for ι admits a simple form when d is the discrete metric, that is, d(ci, cj) = 1− δij .

For the discrete metric, the Gram matrix is B =



0 0 0 · · · 0

0 1 1
2 · · · 1

2

0 1
2 1 · · · 1

2
...

...
...

. . .
...

0 1
2

1
2 · · · 1


=

 0 01×(k−1)

0(k−1)×1 B̃

 ,

where B̃ = 1
2 Ik−1 +1

21(k−1)×(k−1) is full rank. As a result, rankB = k − 1 = p′, so we can

isometrically embed C to Rk−1. A natural embedding ι is to map each ci to the vertex of the k− 1

standard simplex ∆k−1 ⊂ Rk−1. Then the embedding ι is given by

ι : C → ∆k−1, ci 7→
1√
2
ei −

1

(k − 1)
√

2

(
1 +

1√
k

)
1k−1, 1 ≤ i ≤ k − 1, ck 7→ −

1√
2k

1k−1.

3.2.2 Candidate covariance functions for the MGGP

Some candidates for completely monotone functions φ and positive functions with completely mono-

tone derivatives ψ are in Table 3.2.2 (Gneiting, 2002):

φ(t) ψ(t)

exp(−ctγ) (atα + 1)β

(2ν−1Γ(ν))−1(ct1/2)νKν(ct1/2) log(atα + b)/ log b

(1 + ctγ)−ν (atα + β)/(β(atα + 1))

2ν(exp(ct1/2) + exp(−ct1/2))−ν

Table 1: Candidate functions for completely monotone functions φ and positive functions with
completely monotone derivatives ψ. Here, a, c, ν > 0, b > 1, 0 < α, β, γ ≤ 1.

Selecting a φ and a ψ function from Table 3.2.2, we obtain the following semi-isotropic covariance

functions on X , for more covariance functions, see Appendix 6.7:
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K((x, ci), (x
′, cj)) =

σ2

(a2d2
ij + 1)p/2

exp

{
−b

2‖x− x′‖2

a2d2
ij + 1

}
, (7)

K((x, ci), (x
′, cj)) =

σ2

(adij + 1)p/2
exp

{
−b

2‖x− x′‖2

adij + 1

}
, (8)

K((x, ci), (x
′, cj)) =



σ22cp/2

(a2d2ij+1)ν(a2d2ij+c)
p/2Γ(ν)

{
b
2

(
a2d2ij+1

a2d2ij+c

)1/2

‖x− x′‖

}ν
×Kν

(
b

(
a2d2ij+1

a2d2ij+c

)1/2

‖x− x′‖

)
x 6= x′

σ2cp/2

(a2d2ij+1)ν(a2d2ij+c)
p/2 x = x′

, (9)

K((x, ci), (x
′, cj)) =

σ2cp/2

(a2d2
ij + 1)1/2(a2d2

ij + c)p/2
exp

−b
(
a2d2

ij + 1

a2d2
ij + c

)1/2

‖x− x′‖

 . (10)

In the equations above, σ2 > 0 is the spatial variance, a ≥ 0 is the group similarity scale, b ≥ 0

is the feature scale, c ≥ 0 is the dependency scale, and ν > 0 is a smoothness parameter. The

covariance functions in Equation (7) and Equation (8) are analogues of the squared exponential or

radial basis function (RBF). The covariance function in Equation (9) is the analogue of the Matérn

covariance function. In particular, the covariance function in Equation (10) is the special case of

Equation (9) when ν = 1/2, so we can call it the exponential covariance function. Equation (9)

becomes separable when c = 1.

3.2.3 Stationary MGGP with k = 2

We now aim to weaken the isotropic condition described above. Since (C , d) does not admit a

natural group structure, we start with the simple case where k = 2, which appears frequently

in practice, including in data sets where the two groups are male/female, adults/children, treat-

ment/control, etc. Note that by rescaling, we can always embed a binary metric space within R:

ι(c1) = 0, ι(c2) = 1. Then any spatial-temporal covariogram induces an semi-isotropic covariance

function for Rd × C .

For the non-isotropic case observe that C can be identified with Z2 when k = 2, an Abelian

group. In this situation, K is said to be stationary if K((x, d), (x′, l)) = K0(x−x′, d−l). We will use

K instead of K0 for simplicity, where K is characterized by two covariance functions: Kw = K(·, 0),

the within-group covariance function, and Kc = K(·, 1), the cross-group covariance function. It is

clear that any covariance function on Rp × Z2 determines two covariance functions on Rp. On the
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other hand, not all pairs of covariance functions on Rp define a valid (PD) covariance function on

Rp × Z2. In order to construct a valid covariance function on Rp × Z2, we need to find a sufficient

condition for K being PD.

Theorem 2. Let Kw and Kc be two PD functions on Rp with spectral densities ρw and ρc such

that

K(x, 0) = Kw(x) =

∫
Rp
e−2πiωxρw(ω)dω, K(x, 1) = Kc(x) =

∫
Rp
e−2πiωxρc(ω)dω .

Then, K(x, l) =

Kw(x) l = 0

Kc(x) l = 1

is PD on Rp × Z2 if and only if ρw ≥ ρc.

Example 1. Recall the RBF covariance function in Equation (7):

K(x, l) =
σ2

(a2l2 + 1)p/2
exp

{
− b2‖x‖2

a2l2 + 1

}
.

The two spectral densities are given by

ρw(ω) = σ2
( π
b2

) p
2

exp

{
−π

2‖ω‖2

b2

}
,

ρc(ω) = σ2
( π
b2

) p
2

exp

{
−π

2(a2 + 1)‖ω‖2

b2

}
,

where ρw ≥ ρc.

The stationary MGGP assumes homogeneity in the within-group correlation; however, for cer-

tain applications, heterogeneity exists. To account for this heterogeneity, we consider a weaker

version, which we call the semi-stationary MGGP. A semi-stationary MGGP is stationary in Rp

but not in C .

Definition 4. K is said to be semi-stationary if K((x, ci), (x
′, cj)) = K0(x− x′, ci, cj) where K0 is

defined on Rp × C × C .

This semi-stationary assumption is suitable for applications where groups are expected to have

different within-group correlations, but the GP is stationary once the group is fixed. For semi-

stationary MGGPs, K is determined by K0(x) = K(x, 0, 0), Kc(x) = K(x, 0, 1) = K(x, 1, 0) and

K1 = K(x, 1, 1), where K0 6= K1 in general, otherwise K becomes stationary.
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Theorem 3. Let K0, Kc and K1 be PD functions on Rp with spectral densities ρ0, ρc, and ρ1.

Then K(x, l, l′) =


K0(x) l = l′ = 0

Kc(x) l + l′ = 1

K1(x) l = l′ = 1

is PD on Rp × Z2 if and only if ρ0ρ1 ≥ ρ2
c .

Data sets with more than two groups are ubiquitous in scientific applications. For example,

in a biomedical setting, data may be collected from multiple human tissue types; from people of

different race and ethnicity; and from varying age groups. Hence, we generalize the above theory

to k > 2 groups. The main difficulty here is that C does not admit a natural group structure for

k > 2. A straightforward solution would be to identify C with Zk, but the modular structure of

Zk, that is, 1 − 0 = 2 − 1 = · · · k − 1 − (k − 1 − 1) 6= k − (k − 1), is not satisfied in practice.

Hence, Bochner’s Theorem, which fully characterizes positive definite functions on locally compact

Abelian groups, is not applicable.

Motivated by the proof of Theorem 3, we observe that this result is formally identical to an

application of Cramér’s Theorem to bivariate GPs.

Lemma 2 (Cramér (1940)). Let K̃ : Rp → R2×2 be a function with spectral density ρ̃ij. Then, K̃

is positive definite, hence defines a bivariate GP on Rp, if and only if ρ̃(ω) = {ρ̃(ω)}2i,j=1 is positive

semi-definite for any ω ∈ Rp.

That is, Theorem 3 draws an equivalence between Bochner’s Theorem on Rp×Z2 and Cramér’s

Theorem on Rp with bivariate outputs. This insight is crucial, as it enables us to leverage the

large literature on bivariate GPs to construct two-group GPs. Furthermore, given that Cramér’s

Theorem holds for a general k-variate GP, this observation suggests a general theory for an arbitrary

number of groups with k > 2, which we explore below.

3.2.4 Stationary MGGP with arbitrary k

We first draw similarities between the MGGP with k groups and k-variate GPs. Recall that

a Gaussian k-variate random field Z̃ on Y is characterized by its cross-covariance function K̃ :

Y × Y → Rk×k:

Cov(Z̃(x), Z̃(x′)) = K̃(x, x′).

Theorem 4. Let G be the space of all Gaussian random fields on Y × C , where C = {c1, · · · , ck}

and V is the space of all Gaussian k-variate random fields on Y. Then

Φ : G → V , (Φ(Z))i(x) := Z(x, ci), ∀Z ∈ G
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is a bijection, and its inverse Φ−1 is given by

Φ−1 : V → G , (Φ−1(Z̃))(x, ci) = Z̃i(x), ∀Z̃ ∈ V .

The correspondence between the covariance function of Z and the cross-covariance function of Z̃ is

given by

K((x, ci), (x
′, cj)) = K̃(x, x′)ij .

This shows that in order to construct a k-group MGGP it will suffice to construct a k-variate

GP, and vice versa. For our purposes, existing constructions of multi-variate GPs can be applied

(see, e.g., Gneiting et al., 2010; Apanasovich and Genton, 2010; Genton and Kleiber, 2015, for

possible ideas.)

The following Lemma is often referred to as Cramér’s Theorem, which is a multivariate gener-

alization of Bochner’s Theorem.

Lemma 3 (Cramér (1940)). Let K̃ : Rp → Rk×k be a matrix-valued function with elements

(K̃(x))ij = K̃ij(x) and spectral density ρ̃ij. Then, K̃ is positive definite, hence defines a k-variate

GP on Rp, if and only if ρ̃(ω) = {ρ̃(ω)}ki,j=1 is positive semi-definite for any ω ∈ Rp.

We prove the following related result.

Theorem 5. Let K : Rp × C × C → R be a function with Kij = K(·, ci, cj) being stationary on

Rp and spectral densities ρij. Then, K is positive definite, hence defines a semi-stationary GP on

Rp × C , if and only if ρ(ω) = {ρ(ω)}ki,j=1 is positive semi-definite for any ω ∈ Rp.

Note that Theorem 3 is a special case of Theorem 5 when k = 2 but can be proved differently.

As a result, the connection between Bochner’s Theorem on Rp × C and Cramér’s Theorem on Rp

is analogous to the relationship between multi-group GPs and multi-variate GPs.

3.3 Special cases of the MGGP

We discuss the relationship between the MGGP and several commonly used GPs for multi-group

data. We find that each of these models is a special case of the MGGP, which demonstrates the

generality of our model. The first simple model we consider is the separated GP, which models

each group separately with k independent GPs on Rp. Let K1, · · · ,Kk be the covariance functions

of these k GPs.
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Proposition 2. The SGP described above is equivalent to MGGP with covariance function

K((x, ci), (x
′, cj)) =

Ki(x, x
′) i = j

0 i 6= j.

That is, the SGP is a special case of the MGGP with zero between-group correlation.

Another simple model ignores the group structure entirely, Thus, we treat each observation

(x, c) as simply x by dropping the label c ∈ C . Then, we can consider a GP on the union of all

observations across all groups. Assume the covariance function of the UGP is K∪, which is a GP

over Rp. We obtain the following.

Proposition 3. K∪ is equivalent to MGGP with covariance function

K((x, ci), (x
′, cj)) = K∪(x, x′).

That is, the within group and between-group correlations are all equal.

Finally, we consider the hierarchical GP:

µi ∼ GP (0,Kg) ; Z | ci ∼ GP (µi,Kz).

where Kg is the covariance function at the group level, while Kz is the covariance function at the

covariate level.

Proposition 4. The HGP is equivalent to MGGP with covariance function

K((x, ci), (x
′, cj)) = Kg(x, x

′) + 1{i=j}Kz(x, x
′).

That is, the HGP is a special case of the MGGP with identical within-group dependencies and

identical across-group dependencies.

These results reveal that the MGGP is a non-trivial generalization of existing GPs that allows

heterogeneity through a variety of flexible covariance functions that it accommodates.
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4 Experiments

4.1 Simulations

4.1.1 Demonstrating the MGGP’s relationship to related models

We designed and conducted an experiment to ascertain the MGGP’s ability to recover the Separated

GP, Union GP, and Hierarchical GP as special cases. We generated synthetic data from each of

these models using the likelihood function corresponding to Equation (1) using k = 2 groups. We

specified a zero mean, i.e., µ(x; cj) = 0 for both groups, and specified the latent process through

the covariance function corresponding to the three models. We set b = σ2 = a = 1 in

K((x, ci), (x
′, cj)) =

σ2

(a2d2
ij + 1)p/2

exp

{
−b

2‖x− x′‖2

a2d2
ij + 1

}
. (11)

(Note that a is only used in the generation of data from the MGGP). We also assumed τ2
1 = τ2

2 = τ2

in Equation (1) and used τ2 = 0.1 to generate our data. Using these settings, we generated

n1 = n2 = 100 measurements for each group.

We computed the log marginal likelihood of the data, i.e., N(y | 0,Kθ +Dτ ) under each model

for each data set. For the SGP, UGP, and HGP, we used the RBF covariance function, K(x, x′) =

σ2 exp{−b2‖x − x′‖2}. For the MGGP, we used the “multi-group” version of the RBF (Equation

(11)). When computing the likelihood under each model, we fix b, σ2, and τ2 to their true values,

for a we use a grid of values, a = 10−5, 10−4, . . . , 102 and specified Dτ = τ2In

We find that the MGGP performs at par with the UGP, SGP, and HGP in the expected regimes

(Figure 1). In particular, the MGGP recovers the performance (as measured by the log marginal

likelihood) of the SGP when a is large, and it recovers the performance of the UGP as a→ 0. For

data generated from the MGGP, we find that the likelihood peaks at the true value of a and is

higher than all other models at this value. These results i) serve as a demonstration of the role of

the a parameter; ii) confirm numerically that the MGGP recovers these models in certain regimes;

and iii) suggest that the MGGP is a viable generalization of these models.

4.1.2 Estimation and inference for the MGGP

In our previous experiment, we used the multi-group covariance function in Equation (7) and fixed

the value of a. However, in practice we will need to estimate this and all other covariance parameters

from the data. Thus, we next evaluate our ability to fit the parameters of the MGGP using both

maximum likelihood estimation and fully Bayesian posterior inference.
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Figure 1: Comparison between the MGGP, Separated GP, Union GP, and Hierarchical
GP . Using two-group data generated from each of the four models, we computed the log marginal
likelihood of the data under each model. For the MGGP, we used the covariance function in
Equation (7) and used a range of different values the parameter a. In the rightmost plot, the
dashed vertical line indicates the true value of a used for data generation. We use an RBF covariance
function for the Separated GP and Union GP, which does not have an a parameter. We repeated
this experiment 20 times, and the bands in each plot represent 95% confidence intervals.

Figure 2: Covariance function parameter estimation. Using data generated from the SGP
and UGP, we fit the MGGP by finding the maximum likelihood estimate for the true parameters
of the kernel function in Equation (7).

Maximum likelihood estimation. We first conducted an experiment where we generated data

from the SGP and UGP models as in the previous section. We maximize the collapsed or marginal-

ized likelihood corresponding to Equation (1), i.e., N (y | 0,Kθ+τ2In) with respect to θ = {a, b, σ2}

and a common measurement error variance τ2, where θ corresponds to the three parameters in

the multi-group RBF covariance function in Equation (7). We used a conjugate gradient ascent

algorithm (Nocedal and Wright, 2006) to obtain the joint estimates of {θ, τ2}. We implemented

the algorithm in Python using the JAX software framework (Bradbury et al., 2018), which is de-

signed for fast computation, compilation, and automatic differentiation. Experiments were run

on an internal computing cluster using a 320 NVIDIA P100 GPU. We found that the MLE for a

was consistently high for data generated from the SGP and low for the UGP data, as expected

(Figure 2, middle panel). Additionally, the estimation was able to recover the true values for σ2

and b (Figure 2, left and right panels).
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Figure 3: Recovering a with ML estimation. We generated synthetic data from the MGGP
at different values for a and fit the MGGP to these data sets. Here, we fix all other parameters to
their true values. We find that we are able to recover the true value of a to some extent.

Next, we evaluated whether the MGGP could recover the true value of a from synthetic data

sampled from the MGGP model. Here, we generated four datasets, each with a different value

of a for a ∈ {10−3, 10−2, 10−1, 100}. We again optimized all parameters jointly by maximizing

the marginal likelihood, and we examined the estimated value of a for each. We repeated this

experiment ten times. We found that we could consistently estimate a reasonable value of a

(Figure 3). While the estimated values do not exactly coincide with the true values, they still

showed a monotone relationship. Together, these results show that likelihood-based parameter

estimation is feasible in the MGGP model and that existing estimation and optimization techniques

can be successfully applied.

Bayesian Inference. Next, we used a simulated dataset generated in the same manner as above

to we conduct a full Bayesian analysis for the MGGP model as described in Section 2. Here,

we also include a group-specific intercept for the k = 2 groups given by β = (β1, β2)>, with the

data generated according to β1 = 1, β2 = 2. We form the (n1 + n2) × 2 binary design matrix F

appropriately in order to apply the group-specific intercept in the model. With θ = {a, b, σ2} the

prior distribution in Equation (3) is specified as

p(θ, τ2, β) = p(a, b, σ2, τ2, β) = IG(a |αa, α′a)IG(b |αb, α′b)IG(σ2 |ασ, α′σ)IG(τ2 |ατ , α′τ )N(µβ, Vβ) ,
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Figure 4: Posterior predictive distribution under the MGGP. The points represent training
data; the solid lines show the means of the latent processes F (x; c); the dashed lines represent the
predictive means of Y (x; c); and the shaded areas around the lines are twice the standard deviation
of the PPD at the corresponding input points.

where we set αa = α′a = αb = α′b = ασ = α′σ = ατ = α′τ = 1, µβ = 0 and V −1
β = I. We sample

from the posterior distribution in Equation (3) using a Hamiltonian No U-Turn Sampling (Hoffman

et al., 2014) algorithm as implemented in the Stan programming environment (Stan Development

Team, 2020; Riddell et al., 2021).

We ran four chains with dispersed initial values for 400 iterations each. Convergence was diag-

nosed after 200 iterations using visual inspection of autocorrelation plots (Supplementary Figure 2)

and computation of Gelman-Rubin R-hat and Monte Carlo standard errors, and the subsequent

800 samples were retained for posterior inference. The posterior median and 95% credible intervals

are presented in Supplementary Figure 3, which shows that the posterior samples of the covariance

function parameters center around their true values (Supplementary Figure 3). We also sample

from the posterior predictive distribution (PPD), p(Y (x0; cj) | y, F ) (see Section 2), for a collection

of new inputs or test cases. These are presented in Figure 4. Notably, because all of the MGGP

assumptions are encoded in the covariance function, any appropriate method for estimation and

inference in standard GPs can be applied.

Prediction As a final experiment with simulated data, we evaluated the MGGP in its ability

to predict held-out values in a Gaussian process regression task. We generated data from a GP

regression model (Equation (1)), using the Separated GP, Union GP, HGP, and MGGP. We then fit

these models on each of the data sets, using 50% of the data for fitting and computing predictions

for the other 50%. We use the posterior mean as a point prediction for each of the n? held-out
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Figure 5: GP Prediction with simulated data. We generate data from each of the four models
— the SGP, UGP, HGP, and MGGP — and fit each of these models too all datasets. Prediction
error was computed on a hold-out dataset.

samples:

µ? = KX?XK
−1
XXy, (12)

where KX?X is the n? × n matrix of covariance function evaluations for each pair of test and train

samples, and KXX is the n × n matrix of covariance function evaluations for each pair of train

samples. We mean-center the data for each group. To measure the quality of the predictions, we

compute the mean squared error of the predictions,

E =
1

n?

n?∑
i=1

(yi − µ?i )2 (13)

We found that the MGGP emulates the performance of the SGP, UGP, and HGP on their

respective simulated datasets (Figure 5), while with data generated from the MGGP itself, the

MGGP clearly outperformed the other models. While the Separated GP can be expected to perform

well when each group has a large sample size, a primary benefit of the MGGP is its ability to share

information across similar groups when the sample size is limited. Thus, we expect the performance

of the MGGP to improve relative to the SGP in settings in which some groups have a small number

of samples but are closely related to other, larger groups.

To test this hypothesis, we conducted another multi-group GP regression experiment in which

we sought to predict the held-out values for one group that contained few samples. Specifically, we

generated a synthetic dataset containing three groups, where group 1 and group 2 are similar to

one another, and group 3 is dissimilar from the other two. We then generated a series of datasets,

varying the number of samples in group 1 for each. Finally, we computed the prediction error

for the SGP, UGP, HGP, and MGGP. We found that the MGGP outperformed the other models,
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Figure 6: Prediction using simulated data with imbalanced groups. We perform a pre-
diction experiment with k = 3 groups. To generate a series of datasets, we fix the sample size of
groups c2 and c3 to be 50, and vary the sample size of group c1.

especially when the sample size for group 1 was small (Figure 6), confirming our hypothesis. This

result shows that the MGGP thrives relative to other setups when the sample size for some groups

is limited, as it can most effectively leverage information from similar groups.

4.2 Application to GTEx tissue samples

We next applied the MGGP to a large gene expression data set collected by the Genotype-Tissue

Expression (GTEx) project (Consortium et al., 2020). The GTEx v8 data contain measurements

from 17382 samples that span 52 tissue types collected from 838 human donors; see Appendix

6.9.1 for a full list of tissue types and the sample size for each tissue. Along with gene expression

profiling, a variety of additional metadata characteristics were collected, including demographic

variables and tissue health measurements.

In these experiments, we use Gaussian process regression models to analyze the relationship

between a sample’s gene expression profile and its ischemic time (the duration of time between death

and tissue collection). Previous work has shown a robust relationship between gene expression and

ischemic time (Musella et al., 2013; Ferreira et al., 2018); however, whether this relationship exhibits

tissue-specific patterns remains largely unknown. In these experiments, the groups correspond to

tissue types.

4.2.1 Exploring group similarities with the MGGP

As an initial test with the GTEx data, we applied the MGGP to just two tissue types at a time.

These experiments aim to validate that the MGGP can appropriately model known associations
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between similar groups.

Examining model fit via the log marginal likelihood In a preliminary experiment, we ex-

amined three tissue types: tibial artery (n = 657), coronary artery (n = 238), and breast (n = 456).

First, for each of the three pairs of tissues, we fit the MGGP with maximum likelihood estimation,

as described in Section 4.1.2, using the multi-group RBF covariance function in Equation (11).

In this experiment, we fixed a to one value in a preset range, and found the maximum likelihood

estimates of the remaining parameters. Using these maximum likelihood estimates and the fixed

a, we then computed the log marginal likelihood of the data,

log p(y|X, a, b̂, σ̂2, τ̂2) = −k
2

2π − 1

2
det(KXX + τ̂2I)− 1

2
y>(KXX + τ̂2I)−1y,

where KXX is the (n1 + n2)× (n1 + n2) matrix of covariance function evaluations for each pair of

samples. We also fit the Separated GP and Union GP for each pair of tissues using the standard

RBF kernel, and computed the log marginal likelihood of the data under these models. Examining

the log marginal likelihood across varying values of a (Figure 7), we found that two tissue types

that are expected to be similar to one another — tibial and coronary artery — showed a higher

marginal likelihood under small values of a (a / 0.01), while tissues that have unique expression

patterns — tibial artery and breast — showed a higher marginal likelihood under large values

of a (a ' 10). In both cases, the MGGP gracefully recovered the Separated GP and Union GP

marginal likelihoods for a→∞ and a→ 0, respectively. This result implies that the MGGP could

be a viable strategy not only for sharing information across groups, but also for learning the group

relationships themselves.

Recovering group similarities Next, we conducted a similar experiment in which we also

estimated a from the data itself (along with all other model and covariance function parameters),

again using maximum likelihood estimation. In this experiment, we applied the model to all 52

tissue types. We fit the MGGP for every pair of tissues, and extracted âMLE for each pair. This

experiment yields 1
2(52× 51) = 1326 estimated values of a (one for each pair of tissue types).

We found that the estimated values of a reflect many of the expected relationships between the

tissue types (Figure 8). Most notably, we found that 11 subtypes of brain tissue yield low values

for a, suggesting that gene expression changes in these tissue types in a similar manner as ischemic

time changes.
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Figure 7: Likelihood of GTEx gene expression data under the MGGP. For two pairs of
tissues, we computed the log marginal likelihood of the data under the MGGP with a set to be a
range of values. Similar tissue types (anterior cingulate cortex and frontal cortex) prefer low values
of a, while more dissimilar tissues (anterior cingulate cortex and coronary artery) prefer high values
of a.

Recovering group similarities with group-specific errors As a final test of the MGGP in

the two-group setting, we performed a similar pairwise analysis as in the previous paragraph, but

here we allowed each group to have its own noise variance τj as in Equation 1. We apply this model

to a subset of the tissue types: Brain Cortex, Brain Hypothalamus, Esophagus Gastroesophageal

Junction, and Esophagus Mucosa. We fit the MGGP to each of the six pairs of tissues and extracted

the estimated value for a. We found that the resulting values of a recovered similarities between

tissue types: the MGGP obtained a small estimated value for the two brain tissues and for the

two esophagus tissues, while all other values were quite large (Supplementary Figure 4). This

small-scale experiment demonstrates that the MGGP behaves similarly when group-specific noise

variances are included. More generally, these experiments indicate that, in the pairwise case, the

estimated value of a reflects prior biological knowledge about similarity of tissue types.

4.2.2 Leveraging group relationships for prediction

We next conducted a series of experiments with the GTEx data to test whether the MGGP’s model

of group relationships could improve downstream predictive performance relative to standard GPs.

In each of these experiments, we randomly split the data into 50% training samples and 50% testing
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Figure 8: Estimation of a for each pair of GTEx tissue types. Cell ij in the heatmap
represents log10(aij), where aij is the maximum likelihood estimate of a when fitting the MGGP
using tissues i and j. Lower values of a (red) indicate higher similarity, while higher values of a
(black) indicate lower similarity.

samples, and mean-centered each dataset within each group. We fit the MGGP on the training set

using maximum likelihood estimation, using the multi-group RBF kernel in all experiments here

(Equation (11)). Then, we computed the predicted ischemic time for each test sample using the

predictive mean (Equation (12)) for the ischemic time for each gene expression sample and computed

the mean squared error relative to the true ischemic time (Equation (13)). For comparison, we also

fit the Union and Separated GPs using the standard RBF covariance function and the Hierarchical

GP using the standard RBF as both the within- and between-group covariance functions.
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Figure 9: Prediction with GTEx data. We fit each of the four models in a regression setting,
where the covariates are gene expression profiles of samples from various tissue types, and the
response is each sample’s ischemic time. We compute the error on a held-out set of data.

Benchmarking the MGGP, UGP, SGP, and HGP We first performed a prediction exercise

using eight GTEx tissue types: Anterior Cingulate Cortex, Frontal Cortex, Cortex, Breast, Tibial

Artery, Coronary Artery, Uterus, and Vagina. Given a priori similarities between tissue types from

different body parts, we specify the “distance” between two similar tissue types (dij) to be small,

while the distance between dissimilar tissue types is large. Here, we identify sets of similar tissues as

{Anterior Cingulate Cortex, Frontal Cortex, Cortex}, {Breast}, {Tibial Artery, Coronary Artery},

and {Uterus, Vagina}. For each pair of tissues within each of these subsets, we specify the distance

to be dij = 10, and for each pair of tissues between subsets, we specify the distance as dij = 0.1.

The distance from a group to itself is zero, dij = 0 for i = j. Note that, for the multi-group RBF

covariance function (Equation (11)), only the relative distances between groups are relevant, as

the a parameter as a scaling factor on these relative distances, and we estimate a from the data.

Thus, our distance settings imply an assumption that tissue types within each of these subsets are

ten-fold more similar than tissues between the subsets.

Examining the prediction error for each of the four models, we find that MGGP outperforms

UGP, SGP and HGP in terms of overall prediction error, although the HGP performs somewhat

comparably (Figure 9, left panel). Further examining the error for each tissue, we find that the

performance varies substantially across tissue types (Figure 9, right panel).

Fine-tuning group distances While we observe that the MGGP performs well in a prediction

setting, the a priori distances between tissues were chosen somewhat heuristically as a coarse

approximation of prior biological knowledge. However, one may wonder whether these distances can

be chosen more precisely, or perhaps even be learned from the data itself. To test this, we performed
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Figure 10: Fine-tuning group distances and comparison of the MGGP and HGP via
prediction with GTEx data.We use just three tissue types and carefully tune the pairwise
distances between the groups using a data-driven approach.

another prediction experiment with three tissue types: Anterior Cingulate Cortex, Frontal Cortex,

and Breast. Instead of hard-coding the distances, we used a data-driven approach that uses two

steps. In the first step, we fit a two-group MGGP on each of the three pairs of tissues, and used

the resulting MLE for a as the distance between two tissues, dij = âij . For the two cortex tissues,

we find a ≈ 10−4, and and for each of the cortex and breast pairs, we find a ≈ 1. In the second

step, we fit the full three-group MGGP using these learned distances. We also fit the HGP for

comparison.

We find that after using this data-driven approach to select the group-wise distances, the MGGP

performs better than before, both in terms of overall prediction error and group-wise error (Fig-

ure 10). Moreover, we find that the MGGP more clearly outperforms the HGP in this case. This

difference is likely due to the nature of the HGP’s model for group relationships: the HGP treats

all groups symmetrically, in the sense that the only relevant quantity is whether two samples are in

the same group or different groups. In contrast, the MGGP relies on the specific group identities

of any two samples, as well as the distance between those groups. This result implies that care-

fully defining the group relationships can be important for the MGGP, and that the demonstrated

data-driven approach is a viable strategy for doing so.

Assessing univariate relationships The MGGP regression framework also allows for assessing

relationships between the outcome variable and individual explanatory variables. To demonstrate

this, we again leveraged data for three GTEx tissue types: Anterior Cingulate Cortex, Frontal

Cortex, and Breast. In this experiment, we fit the MGGP to these data using just one gene

at a time, finding a one-dimensional regression function describing each gene’s relationship to
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Figure 11: Examining univariate relationships with the MGGP. For three tissue types, each
sample’s expression of the gene AHNAK (x-axis) and its ischemic time (y-axis) are shown by the
scatter points. The solid lines show the MGGP’s posterior predictive mean when fit on this single
gene in these three tissues.

ischemic time. We fit the model using maximum likelihood estimation and the multi-group RBF

covariance function (Equation (11)), and we used the between-group distances found in the previous

experiment. We then computed the predicted mean (Equation (12)) for a dense grid of input points,

and we examined the resulting regression functions.

We find that the MGGP identifies several trends in the relationship between gene expression

and ischemic time that show group-level trends. For instance, we find that expression of the gene

AHNAK, which codes for a neuroblast differentiation-associated protein, decays similarly for the

two cortex tissues, while this decay pattern follows a different trend in breast tissue (Figure 11).

Moreover, we find that this relationship is robust to the choice of group distances (Supplemen-

tary Figure 5). This experiment demonstrates that the MGGP can be used for more specifically

characterizing the group-wise relationships present in a dataset.

5 Discussion

In this work, we present the multi-group Gaussian process (MGGP), a flexible approach for mod-

eling complex dependencies in datasets with subgroup structure. We present several options for

constructing valid covariance functions on Rp×C , and we show that this structure generalizes sev-

eral existing GP models. We demonstrate the behavior of the MGGP through a series of simulation

experiments and an application to a dataset of gene expression measurements.
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Several future directions remain to be explored. First, this paper lays the groundwork for

developing new positive definite covariance functions on Rp×C . A particularly interesting direction

is to construct covariance functions whose within-group and between-group correlations exhibit

fundamentally different structure (e.g., the within-group correlation may be Matérn-like, while the

between group correlation may be RBF-like). Second, as briefly mentioned in Section 2, recent

advances in scalable GPs could be applied to the MGGP. For example, sparsity-inducing GPs have

received much attention in the recent past (see, e.g., Datta et al., 2016; Katzfuss and Guinness, 2021;

Peruzzi et al., 2020) and such methods can be applied to the class of MGGP models presented here.

Finally, although we primarily focused on GP regression in this paper, the MGGP can be applied in

any GP-based model. Thus, there could be benefits from using the MGGP in classification models,

latent variable models, and other applications. We envision the MGGP being a flexible tool in a

variety of contexts.

6 Appendix

6.1 Proof of Proposition 1

Proof. First, assume K2 is positive definite, and let the observation set be C = {c1, · · · , ck}. Then

the covariance matrix is exactly C, which is positive definite as well.

We assume C is positive definite. Given any observation set, we can rearrange the observations

to be {c1, · · · , c1︸ ︷︷ ︸
n1

, · · · , ck, · · · , ck︸ ︷︷ ︸
nk

}. Then the corresponding covariance matrix Σ can be written as

the following block matrix:

Σ =


C111n1×n1 C121n1×n2 · · · C1k1n1×nk

C211n2×n1 C221n2×n2 · · · C2k1n2×nk
...

. . .
...

Ck11nk×n1 Ck21nk×n2 · · · Ckk1nk×nk

 ,

where 1 is the matrix with all entries equal to 1. Let Pi ∈ Rni×ni be rotation matrices such that

Pi1ni =
√
nieni , where eni = [1, 0, · · · , 0]> ∈ Rni , i = 1, · · · , k, and let P := diag{P1, · · · , Pk} ∈
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R
∑
i ni×

∑
i ni . Then,

PΣP> =


P1

. . .

Pk



C111n1×n1 C121n1×n2 · · · C1k1n1×nk

C211n2×n1 C221n2×n2 · · · C2k1n2×nk
...

. . .
...

Ck11nk×n1 Ck21nk×n2 · · · Ckk1nk×nk



P>1

. . .

P>k



=


C11P11n1×n1P

>
1 · · · C1kP11n1×nkP

>
k

...
. . .

...

Ck1Pk1nk×n1P
>
1 · · · CkkPp1nk×nkP

>
k



=


C11(P11n1)(P11n1)> · · · C1k(P11n1)(Pk1nk)>

...
. . .

...

Ck1(Pk1nk)(P11n1)> · · · Ckk(Pk1nk)(Pk1nk)>



=


C11n1en1e

>
n1

· · · C1k
√
n1nken1e

>
nk

...
. . .

...

Ck1
√
nkn1enke

>
n1
· · · Ckknkenke

>
nk



As a result, eigenvalues of Σ are the same as eigenvalues of Σ̃ =


C11n1 · · · C1k

√
n1nk

...
. . .

...

Ck1
√
nkn1 · · · Ckknk

.

Let v = [
√
n1, · · · ,

√
nk]
> then

Σ̃ = C � vv>.

Then by assumption and Schur product theorem (Styan, 1973), Σ̃ is positive semi-definite, which

finishes the proof.

6.2 Proof of Corollary 1

Proof. By Proposition 1, K2 is positive definite if and only if C is positive definite. Under the

assumption of homogeneity, C =


1 b · · · b

b 1 · · · b
...

...
. . .

...

b b · · · 1

. We can rewrite C = (1 − b)Ik + b1k×k. Recall

that 1k×k has eigenvalue p with multiplicity 1, and the corresponding eigenvector is 1k. Moreover,

0 is another eigenvalue with multiplicity k − 1. As a result, eigenvalues of Σ are 1 − b + bk with
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multiplicity 1 and 1 − b with multiplicity −1. We can conclude that C is positive definite if and

only if − 1
k−1 ≤ b ≤ 1.

6.3 Proof of Theorem 1

Proof. By the isometric embedding, finding K is equivalent to finding a semi-isotropic covari-

ance function K0 in Rp × Rp′ . For any completely monotone function ϕ : R+ → R and posi-

tive function ψ : R+ → R+ with a completely monotone derivative, Gneiting (2002) proved that

K0((x1, x
′
1), (x2, x

′
2)) = σ2

(ψ(‖x′1−x′2‖2))
p/2ϕ

(
‖x1−x2‖2

ψ(‖x′1−x′2‖2)

)
is positive definite for any σ2 > 0. As a

result,

K((x, ci), (x
′, cj)) := K0((x, ι(ci)), (x

′, ι(cj)))

is positive definite.

6.4 Proof of Theorem 2

Recall the general form of Bochner’s Theorem for a locally compact Abelian group:

Lemma 4 (Bochner’s Theorem). Let G be a locally compact Abelian group and Ĝ be its dual group,

then for any continuous positive-definite function K on G, there exists a unique positive measure

µ on Ĝ such that

K(g) =

∫
Ĝ
ξ(g)dµ(ξ).

Note that G = Rp ×Z2 is a locally compact Abelian group and the dual group is Ĝ = Rp ×U2,

where U2 is the group of second roots of unity, that is, U2 = {1,−1}. Ĝ acts on G as

(ω, z)((x, l)) = e−2πiωxzl.

The spectral measure of K, denoted by µ on Rp × U2 splits as µ1 × µ2 where µ1 is a measure

on Rp and µ2 is a measure on U2. Then we claim that

K(x, l) =
∑
z∈U2

∫
Rp
e−2πiωxzlρ(ω, z)dω,

where ρ(ω, 1) = 1
2ρw(ω) + 1

2ρc(ω) and ρ(ω,−1) = 1
2ρw(ω)− 1

2ρc(ω). We derive from the right hand
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side to the left hand side. First consider the case when l = 0:

∑
z∈U2

∫
Rp
e−2πiωxz0ρ(ω, z)dω

=
1

2

∫
Rp
e−2πiωx(ρw(ω) + ρc(ω))dω +

1

2

∫
Rp
e−2πiωx(ρw(ω)− ρc(ω))dω

=

∫
Rp
e−2πiωxρw(ω)dω

= Kw(x) = K(x, 0).

Similarly, when l = 1,

∑
z∈U2

∫
Rp
e−2πiωxz1ρ(ω, z)dω

=
1

2

∫
Rp
e−2πiωx(ρw(ω) + ρc(ω))dω − 1

2

∫
Rp
e−2πiωx(ρw(ω)− ρc(ω))dω

=

∫
Rp
e−2πiωxρc(ω)dω

= Kc(x) = K(x, 1).

As a result, K is PD ⇐⇒ ρ is a positive measure ⇐⇒ ρw ≥ ρc, and the Theorem follows.

6.5 Proof of Theorem 3

The generalized spectral measure of K, denoted by µ (with density ρ) on Rp × U2 × U2, splits as

µ1 × µ2 where µ1 is a measure on Rp and µ2 is a positive semi-definite measure on U2 × U2. Then

K(x, l, l′) =
∑
z∈U2

∑
z′∈U2

∫
Rp
e−2πiωxzlz′l′ρ(ω, z, z′)dω.

We claim that ρ(ω, z, z′) =


1
4 (ρ0(ω) + 2ρc(ω) + ρ0(ω)) z = z′ = 1

1
4 (ρ0(ω)− ρ1(ω)) zz′ = −1

1
4 (ρ0(ω)− 2ρc(ω) + ρ1(ω)) z = z′ = −1.

.
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We derive from the right hand side to the left hand side. First consider the case when l = l′ = 0:

∑
z∈U2

∑
z′∈U2

∫
Rp
e−2πiωxz0z′0ρ(ω, z, z′)dω

=
1

4

∫
Rp
e−2πiωx (ρ0(ω) + 2ρc(ω) + ρ1(ω) + ρ0(ω)− ρ1(ω) + ρ0(ω)− ρ1(ω) + ρ0(ω)− 2ρc(ω) + ρ1(ω)) dω

=

∫
Rp
e−2πiωxρ0(ω)dω

= K0(x) = K(x, 0, 0).

Similarly, when l = 0, l′ = 1,

∑
z∈U2

∑
z′∈U2

∫
Rp
e−2πiωxz0z′1ρ(ω, z, z′)dω

=
1

4

∫
Rp
e−2πiωx (ρ0(ω) + 2ρc(ω) + ρ1(ω)− ρ0(ω) + ρ1(ω) + ρ0(ω)− ρ1(ω)− ρ0(ω) + 2ρc(ω)− ρ1(ω)) dω

=

∫
Rp
e−2πiωxρc(ω)dω

= Kc(x) = K(x, 0, 1).

When l = l′ = 1,

∑
z∈U2

∑
z′∈U2

∫
Rp
e−2πiωxz1z′1ρ(ω, z, z′)dω

=
1

4

∫
Rp
e−2πiωx (ρ0(ω) + 2ρc(ω) + ρ1(ω)− ρ0(ω) + ρ1(ω)− ρ0(ω) + ρ1(ω) + ρ0(ω)− 2ρc(ω) + ρ1(ω)) dω

=

∫
Rp
e−2πiωxρ1(ω)dω

= K1(x) = K(x, 1, 1).

As a result, K is PD ⇐⇒ ρ is a positive semi-definite measure ⇐⇒ (ρ0 + 2ρc + ρ1)(ρ0− 2ρc + ρ1)−

(ρ0 − ρ1)2 = 4(ρ0ρ1 − ρ2
c) ≥ 0, and the Theorem follows.

6.6 Proof of Theorem 4

Proof. Given a Gaussian random field Z on Y × C with covariance function K, we prove that

Z̃ := Φ(Z) is a Gaussian k-variate random field on Y with cross-covariance function K̃. It suffices
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to check that Cov(Z̃(x), Z̃(x′)) = K̃(x, x′), for any x, x′ ∈ Y.

Cov(Z̃(x), Z̃(x′)) = Cov([Z(x, c1), · · · , Z(x, ck)]
>, [Z(x′, c1), · · · , Z(x′, ck)]

>)

=


K((x, c1), (x′, c1)) K((x, c1), (x′, c2)) · · · K((x, c1), (x′, ck))

K((x, c2), (x′, c1)) K((x, c2), (x′, c2)) · · · K((x, c2), (x′, ck))
...

...
. . .

...

K((x, ck), (x
′, c1)) K((x, ck), (x

′, c2)) · · · K((x, ck), (x
′, ck))



=


K̃11 K̃12 · · · K̃1k

K̃21 K̃22 · · · K̃2k

...
...

. . .
...

K̃k1 K̃k2 · · · K̃kk


= K̃(x, x′).

Then assume Z̃ is a Gaussian k-variate random field on Y. We prove that Z : Φ−1(Z̃) is a Gaus-

sian random field on Y×C with covariance functionK. It suffices to check that Cov(Z(x, ci), Z(x′, cj)) =

K((x, ci), (x
′, cj)) for any x, y ∈ Y, i, j = 1, · · · , k. Then,

Cov(Z(x, ci), Z(x′, cj)) = Cov(Z̃i(x)), Z̃i(x
′)))

= K̃(x, x′)ij

= K((x, ci), (x
′, cj)).

6.7 More covariance functions

We provide more semi-isotropic covariance functions below.

K((x, ci), (x
′, cj)) =

σ2(a2d2
ij + 1)

[(a2d2
ij + 1)2 + b2‖x− x′‖2]

p+1
2

, (14)

K((x, ci), (x
′, cj)) =

σ2(adij + 1)

[(adij + 1)2 + b2‖x− x′‖2]
p+1
2

, (15)

K((x, ci), (x
′, cj)) = σ2 exp

{
−a2d2

ij − b2‖x− x′‖2 − cd2
ij‖x− x′‖2

}
, (16)

K((x, ci), (x
′, cj)) = σ2 exp

{
−adij − b2‖x− x′‖2 − cdij‖x− x′‖2

}
. (17)
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6.8 Code

All code for the models and experiments can be found in our GitHub repository: https://github.

com/andrewcharlesjones/multi-group-GP. Within this repository, we provide an installable

Python package for model fitting, covariance functions, prediction, and analysis.

6.9 Data

6.9.1 GTEx

The GTEx data can be downloaded from the GTEx portal: https://gtexportal.org/home/

datasets. We use 52 tissue types, listed below, although some experiments use a subset of these

tissue types. The sample size for each tissue type is shown in square brackets. Adipose Subcuta-

neous [644], Adipose Visceral (Omentum) [539], Adrenal Gland [254], Artery Aorta [424], Artery

Coronary [238], Artery Tibial [657], Bladder [21], Brain Amygdala [147], Brain Anterior cingulate

cortex (BA24) [172], Brain Caudate (basal ganglia) [230], Brain Cerebellar Hemisphere [208], Brain

Cerebellum [241], Brain Cortex [255], Brain Frontal Cortex (BA9) [200], Brain Hippocampus [188],

Brain Hypothalamus [193], Brain Nucleus accumbens (basal ganglia) [232], Brain Putamen (basal

ganglia) [194], Brain Spinal cord (cervical c-1) [155], Brain Substantia nigra [133], Breast Mammary

Tissue [456], Cells Cultured fibroblasts [444], Cells EBV-transformed lymphocytes [174], Cervix

Ectocervix [9], Cervix Endocervix [10], Colon Sigmoid [373], Colon Transverse [406], Esophagus

Gastroesophageal Junction [375], Esophagus Mucosa [551], Esophagus Muscularis [515], Fallopian

Tube [9], Heart Atrial Appendage [422], Heart Left Ventricle [428], Kidney Cortex [85], Kidney

Medulla [4], Liver [224], Lung [573], Minor Salivary Gland [162], Nerve Tibial [615], Ovary [180],

Pancreas [37], Pituitary [283], Prostate [245], Skin Not Sun Exposed (Suprapubic) [595], Skin Sun

Exposed (Lower leg) [665], Small Intestine Terminal Ileum [187], Spleen [233], Stomach [359], Testis

[359], Uterus [142], Vagina [156], Whole Blood [139].
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