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Abstract

Spatially-resolved genomic technologies have allowed us to study the physical organiza-
tion of cells and tissues, and promise an understanding of the local interactions between
cells. However, it remains difficult to precisely align spatial observations across slices,
samples, scales, individuals, and technologies. Here, we propose a probabilistic model
that aligns a set of spatially-resolved genomics and histology slices onto a known or un-
known common coordinate system into which the samples are aligned both spatially and
in terms of the phenotypic readouts (e.g., gene or protein expression levels, cell density,
open chromatin regions). Our method consists of a two-layer Gaussian process: the first
layer maps the observed samples’ spatial locations into a common coordinate system,
and the second layer maps from the common coordinate system to the observed read-
outs. Our approach also allows for slices to be mapped to a known template coordinate
space if one exists. We show that our registration approach enables complex downstream
spatially-aware analyses of spatial genomics data at multiple resolutions that are impos-
sible or inaccurate with unaligned data, including an analysis of variance, differential
expression across the z-axis, and association tests across multiple data modalities. |

1 Introduction

Spatially-resolved genomic technologies hold the promise to understand the spatial organiza-
tion, variation, and local effects of cellular morphology, somatic mutations, gene expression,
protein expression, and other cellular phenotypes (Stahl et al., 2016} |Rodriques et al., [2019;
Stickels et al.l 2021} Lee et al., |2021; Zhao et al., |2021)). However, it remains difficult to
jointly analyze multiple phenotypic readouts from these technologies due to inevitable spa-
tial warping and biological variation across slices, samples, and individuals. Moreover, the
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coordinate system, spatial resolution, slice, scale, field-of-view, and data modality of these
data vary widely across different technologies, making it difficult to analyze multiple spatial
genomics slices jointly.

Here, we present a probabilistic model that aligns the local coordinate systems of spatially-
resolved genomics and histology datasets across tissue slices, individuals, and technologies.
Our model is well-suited for spatially-resolved measurements of cellular morphology, somatic
mutations, gene expression, protein expression, and other cellular phenotypes, each of which
may be collected at sub-cellular, cellular, or super-cellular resolution. Given a set of mis-
aligned slices, our approach is to iteratively estimate a robust common coordinate system
— a set of spatial locations along with the distribution of phenotypic readout values found
at each location — using these slices, and map the local coordinates from each slice onto
the common coordinate system. Our model, which leverages similarities in both the spatial
structure and phenotypic readouts between slices, enables the creation of a common coor-
dinate system onto which heterogeneous slices may be mapped and then analyzed jointly.
Using this framework, new slices may also be projected into a given coordinate system, of
which there are only a few (Sunkin et al.l 2012; |Rozenblatt-Rosen et al., |2020).

Our proposed generative model uses two stacked Gaussian processes (GPs) to align
spatial slices across technologies and samples in a two-dimensional, three-dimensional, or
potentially spatiotemporal coordinate system. Given a location in a slice, the first layer of
the fitted model maps this location to its corresponding location in the common coordinate
system, and the second layer generates the distribution of phenotypic readout values at that
location (e.g., the distribution of gene expression for each gene).

Our approach opens the door to the creation of large tissue and organ atlases with a
shared coordinate system using collections of tissue samples. Our model allows for straight-
forward downstream analyses on the aligned slices, including imputation, completion of
sparse measurements, analysis of variation, spatially-resolved differential expression, map-
ping between data modalities, and uncertainty estimates for each of these analyses. More-
over, technologies with different phenotypic readout modalities can be jointly analyzed under
our model, including spatial transcriptomics, spatial protein expression, and histology im-
ages such as hematoxylin and eosin (H&E) stains (Fischer et al., [2008).

1.1 Background
1.1.1 Spatially-resolved genomics technologies

In the past decade, a number of technologies have been developed to obtain spatially-resolved
molecular measurements in biological tissues. A common readout of these technologies is
gene expression levels (quantification of RNA transcripts), where the spatial locations of
those transcripts are collected simultaneously with gene expression measurements (Lubeck
and Cai, 2012; Eng et al., 2019; Stahl et al., |2016; Rodriques et al., 2019; Lee et al., [2021)).
In addition to gene expression, technologies have been developed to measure genotype and



somatic mutations, protein expression, chromatin accessibility, and other molecular readouts
with spatial resolution (Goltsev et al.l 2018; Keren et al., 2019; [Thornton et al., |2021; Zhao
et al) |2021). These protocols also often collect matching histology images in the form of
H&E stains. As new technologies have been developed, several computational models and
analysis pipelines have been proposed for processing and downstream analyses of single slice
data (Velten et al., 2020; Townes and Engelhardt, 2021; Atta and Fan, [2021; Verma and
Engelhardt, [2020; Svensson et al., 2018; [Dries et al., [2021; Palla et al., 2021)).

Although these methods have allowed for new scientific discoveries, it remains difficult to
analyze multi-slice datasets due to spatial distortions in the tissue sample that occur during
preparation and tissue collection. Furthermore, the various spatial genomics platforms range
widely in their fields-of-view, their levels of spatial resolution, and the number of phenotypic
features they measure. The current standard analysis approach — in which each slice is
analyzed in isolation — drastically reduces the statistical power of the analyses, or prohibits
these analyses entirely. Thus, there remains a need for tools that enable a joint analysis
across slices, samples, modalities, scales, and technologies.

1.1.2 Registration and hyperalignment

The problem of integrating disparate spatial and temporal slices from multiple sources has
arisen in several fields. The problem of spatial alignment has perhaps been most thoroughly
studied in the context of functional magnetic resonance imaging (fMRI) data and is referred
to as registration in that context (Brett et al., |2001; Klein et al., |2009; Lancaster et al.,
2000)).

At a given time point, an fMRI scan produces measurements on a three-dimensional grid
across the brain across time, where the continuous level of blood flow is measured at each
point (“voxel”) in the grid. Given multiple scans across days or subjects, the alignment
problem is to warp the spatial coordinates of each voxel in a scan so that the matching
brain regions for each patient are aligned and their (z,y,z) coordinate systems refer to
approximately the same functional voxel in the brain.

Two major efforts to align fMRI scans have emerged: template-based registration and
hyperalignment. Template-based registration methods seek to align scans from different
subjects to a pre-defined template spatial coordinate system. This template is typically
defined as a single subject’s scan or as the average of a collection of scans across multiple
manually-aligned subjects. The most popular approach uses a “template brain” developed
at the Montreal Neurological Institute (MNI) (Evans| (1992} |Collins et al. [1994)), which is
the functional equivalent of a tissue atlas. Then, collected MRI and fMRI samples’ voxel
coordinates are warped so that the new samples’ voxel coordinates match this template in
terms of both location in the brain and voxel behavior across time.

Hyperalignment approaches seek to align different subjects’ data without a pre-defined
template. In particular, hyperalignment methods compute scan-specific transformations of
the voxel space such that each scan is aligned with the others, using the “centroid” of all scans



as the template. Both linear (Haxby et al.,|2011) and nonlinear (Lorbert and Ramadgel 2012)
hyperalignment approaches have been developed. However, hyperalignment approaches are
less concerned with creating an interpretable common coordinate system, instead focusing
on estimating a generic latent representation of the scans.

More recently, a flexible nonparametric model called the Brain Kernel was developed
for analysis of fMRI data (Wu et al., [2021). This model, similar to the model we propose
here, is a two-layer deep Gaussian process (DGP), where the intermediate layer of hidden
variables captures functional correlation between voxel locations across the brain. However,
the Brain Kernel is not concerned with finding a common coordinate system for multiple
fMRI samples; instead, the DGP estimates the observed spatial coordinates from one sam-
ple using a higher-dimensional (> 3) latent space that includes both (z,y,z) coordinates
and additional latent coordinates in order to build a low-dimensional representation of the
spatially-resolved covariance matrix of the voxel behavior.

Alignment methods developed for fMRI data are not easily extensible to the setting of
spatial genomics and histology slices for a variety of reasons. First, curated structural and
anatomical common coordinate systems are not available for the diversity of tissue types,
developmental stages, and species that are studied using spatial genomics. Second, while
the readout at each location for fMRI data is a scalar (a single number representing the
level of blood flow), the readout in spatial genomics applications can be high dimensional,
often having on the order of 102 — 10° sparse and noisy features. Finally, while the spatial
resolution of fMRI scans tends to be one of a small number of values (a small set of standard
resolutions for fMRI machines), there is a wide diversity of spatial technologies, each with
their own resolution and field-of-view. Thus, there is a need for spatial genomics-specific
alignment tools.

1.1.3 Methods for spatial genomics slice alignment

Several computational methods have been proposed to align genomics RNA-sequencing data
from multiple batches, labs, or time points (Butler et al., 2018; Hie et al., 2019; |Stuart et al.,
2019; [Korsunsky et al., 2019).

In the spatial setting, to the best of our knowledge, just two approaches have been
proposed for aligning samples’ spatial coordinates.

As one of the first efforts in this direction, Probabilistic Alignment of Spatial Transcrip-
tomics Experiments (PASTE) (Zeira et al., 2021) was developed to align adjacent tissue slices
in Spatial Transcriptomics (ST) data (Stahl et al., [2016). PASTE uses an optimal trans-
port framework to identify mappings between the spatial locations of adjacent slices. Its
objective function trades off the transcriptional similarity and physical proximity of spatial
locations. While PASTE is a robust and fast framework, it is limited to linear alignments,
which are often insufficiently expressive for complex distortions of data. Furthermore, it
does not have an associated generative model, precluding the quantification of uncertainty
in the alignment.



A landmark-based method relying on Gaussian process regression called Effortless Generic
GP Landmark Transfer” (Eggplant) was recently developed (Andersson et all 2021)). Egg-
plant projects the gene expression values of each misaligned slice onto a fixed template
coordinate system. It requires the user to identify ¢ landmark locations on each misaligned
sample and the template sample. While Eggplant can account for spatial correlation in gene
expression levels, it performs this template transfer independently for each slice and each
gene, ignoring any correlation structure between them. Moreover, the selection of land-
mark locations may be difficult for slices from tissues without a canonical structure, such as
tumors, and requires annotating existing landmarks shared across slices.

1.2 Contributions of this paper

In this work, we develop Gaussian Process Spatial Alignment (GPSA), a Bayesian framework
for spatial alignment and analysis of multiple spatially-resolved genomics and histology slices.
The contributions of this paper are as follows.

e Given a set of spatial genomics tissue slices with distorted or unaligned local coordi-
nate systems, GPSA estimates a common coordinate system as a collection of latent
variables from this set of disparate spatially-resolved measurements and aligns new
samples to this estimated common coordinate system;

o GPSA can be used with an existing common coordinate system or a set of landmarks;

o GPSA jointly aligns datasets to the common coordinate system from multiple pheno-
typic readout modalities, including spatial gene expression, spatial protein expression,
spatial somatic DNA mutations, spatial open chromatin regions, and histology images;

e GPSA allows for alignment of slices that do not overlap, or are parallel slices of the same
tissue, or are across individuals, or have different fields-of-view, scales, or resolutions;

e GPSA allows for imputation of missing data and creation of dense spatial readouts for
an arbitrary collection of spatial coordinates within the coordinate system that can be
used for downstream analysis;

e These common coordinate systems may be used for a variety of multi-slice downstream
tasks. For example, one could use these aligned coordinates to identify spatially vari-
able genes (Svensson et al. |2018]), explore low-dimensional structure across multiple
samples (Townes and Engelhardt, 2021} [Velten et al., [2020), project nonspatial (disas-
sociated) single-cell data onto the spatially-resolved landscape (Verma and Engelhardt),
2020), and create atlases of spatial genomics data for entire tissues or organisms within
a common coordinate system (Hawrylycz et al., [2012).



2 Problem definition and notation

Here, we formalize the problem we wish to solve. We define a spatially-resolved slice or slice
from a spatial genomics or histology technology as a set of pairs {(x;,y;)}",, where x; € RP
is a vector of spatial coordinates encoding a single slice’s relative location in a D-dimensional
space, and y; € RP is a vector of measured readout features at this location. Typically,
D € {2,3,4} in biomedical applications, where D = 4 corresponds to the spatiotemporal
setting. We focus on D = {2,3} in this paper. Following convention, we refer to a single
location x; as a spot, which may refer to a single cell, a subcellular location, a collection
of cells, or a single pixel depending on the technology. We arrange the observations from
a slice into two data matrices: the spots’ relative locations X € R™ P and the phenotypic
readouts associated with those spots Y € R"*P,

To give concrete examples, in spatial transcriptomics applications, x; encodes a spatial
location on a single tissue slice, and y; is a vector of RNA transcript counts at this location
for each of p genes. In a histology setting, x; is a pixel location, and y; is a vector containing
the p image color channel readouts.

We assume we have S spatially-resolved slices collected from the same tissue type and
similar tissue region. Often, these slices will be adjacent slices from a single tissue, but as
we will show in our results, our approach is extensible to datasets collected from different
tissue samples or individuals. Suppose slice s (s € {1,...,S5}) contains ns spots, and let
X® = [x{,x3,...,x5.]" denote its spatial locations. Similarly, let Y* = [y{, y35, - ,y5 ]"
be the sth readout of feature values. We denote the total number of spots across slices as
N = Ele ns. We note that, in our framework, the slices may have different total numbers
of spots, and may be on different scales.

Our goal is to align these S slices’ spatial coordinates by creating a common coordinate
system such that the matching anatomical, structural, and functional regions of each slice are
mapped to the same absolute locations in the common coordinate system. To do this, we seek
correspondences between both the spatial coordinates and phenotypic readouts of each slice.
Specifically, we seek S vector-valued warping functions g',¢2,...,¢°, with ¢° : RP? — RP,
each of which maps a slice’s observed relative spatial coordinates into a shared common
coordinate system. Let g7 = ¢g°(x;) denote the evaluation of the sth warping function at
spatial location xj. We call g} the aligned spatial location of this spot, and let the full set
of aligned spatial locations be denoted as G = [gi,g3, ..., g7, g1 g;fs].

Our goal is to estimate these warping functions {gs}le such that any two samples
mapped to nearby points in the common coordinate system, g ~ gf,’, are structurally and
functionally similar to one another. We consider three approaches, that show the powerful
behavior of our probabilistic model under uncertainty and censored information. First, we
treat the multiple slices as biological replicates to leverage both spatial information and
the measured readouts for alignment. Second, we consider multiple data modalities of the
same biological system, assuming the data come from approximately the same location in the
absolute coordinate system to leverage the spatial locations and all modalities jointly. Third,



we use multiple slices and infer their relationship along an unobserved z-axis, assuming that
the measured readouts vary across the z-axis in a smooth way. The flexibility of our Gaussian
process framework allows each of these three approaches to alignment.

3 Methods

3.1 Gaussian Process Spatial Alignment (GPSA)

Here, we propose Gaussian Process Spatial Alignment (GPSA), a Bayesian model for aligning
spatial genomics and histology slices whose spatial coordinates are distorted or on different
systems across the slices. GPSA consists of a two-layer deep Gaussian process (DGP, Dami-
anou and Lawrence, (2013))), where the first layer GP maps the observed spatial coordinates
of a slice onto a latent common coordinate system, and the second layer maps the common
coordinates onto the observed phenotypic readout values. We describe each of these layers
in turn.

First layer: Warping functions GPSA places GP priors on the warping functions
g',...,g° that map the observed spatial coordinates onto a common coordinate system.
Focusing on the case with D = 2 spatial dimensions for demonstration, GPSA assumes

s 95 (x7) s
gi:|:5 Zs:|7 nggP(Mgd7kg); 821,...,S,d:1,2,
95(x7)

where g3 is the warping function for slice s whose output is the dth spatial dimension,
Hgd RP — R is a mean function, and kg - RP x RP — R is a positive definite covariance
function. We specify the mean of the aligned spatial location to be equal to the observed
location, pgq(x) = x4, which encourages the aligned coordinate for a given spatial location
to be centered around the observed location. This assumption is useful to avoid extreme
warps that drastically shift the mean of each observed location.

Second layer: Modeling phenotypic readouts GPSA then posits another set of func-
tions { fj}§:1 that describe the spatial organization of each phenotypic readout or feature
(e.g., gene expression values) within the common coordinate system. We place a GP prior
on these functions as well. Letting y;; denote the value for feature j in spot ¢ from slice s,

GPSA assumes
yfj:fj(gf)_‘_e) fJNgP(Mf’kf)7 J=1...,p, s=1,...,5, (1)

where € ~ N(0,02) is a noise term, g RP — R is a mean function, and kg RPxRP - R
is a positive definite covariance function. Let fj; € R be the evaluation of f; at input g;. We
specify 1y = 0, as we assume the phenotypic readouts have been centered. Furthermore, let

F=[fl;,f3,..., £, ‘(Siﬂ)j, . ,ff;sp] denote the full set of function evaluations.



The above model results in a two-layer DGP where, for each slice s, the DGP is made up
of a composition of two functions, f o ¢°. By placing GP priors on each of these functions,
our model results in a two-layer DGP.

Whereas each slice has its own warping function ¢°, the functions modeling the spatial
organization of phenotypic readouts in the common coordinate system, {f; }§:17 are shared
across the slices. In other words, the first layer warps the locations of each spot in each slice
to the common coordinate system while the second layer describes, at each location in the
common coordinate system, the distribution of the readouts at that location captured from
the aligned slices. Inference is thus guided by two competing objectives: retain the current
relative position of each spot in a slice while warping each spot to ensure the readouts match
as closely as possible with the distribution of readouts localized in the common coordinate
system.

3.2 Multi-modality and low-rank modeling of the phenotypic readouts

Our GPSA allows for joint modeling of multiple types of readout modalities. For example,
many experiments collect both spatial gene expression profiles and histology images for each
tissue slice (Stahl et al.. 2016; Vickovic et all [2019). These modalities contain comple-
mentary information, and it is of interest to analyze both modalities across multiple slices
jointly in a common coordinate system. To do this, we augment our model of the pheno-
typic readouts to include a separate likelihood for each modality, allowing for
straightforward multi-modality alignment. See Appendix for more details.

Although the measurements at each location are typically high-dimensional, the readout
features tend to be highly correlated with one another, and this correlation is often well
described (based on scRNA-seq experiments) by a lower-dimensional (< p) manifold (Lin-
derman), 2021} Zeisel et al., 2015; Pierson and Yau, |2015; Ding et al. 2018). To account for
this, GPSA allows for low-rank modeling of the outcome variables through a linear model
of coregionalization (LMC; |Goulard and Voltz (1992); Appendix [6.3.5)), which models the
outcomes as a weighted linear combination of a small number of GPs.

3.3 Posterior inference for the common coordinate system

We have two statistical objectives with the GPSA model: estimating the common coordinate
system, as represented by the latent variable G, and estimating the warped, denoised, and
localized values for the phenotypic readouts for each slice, represented by F. The common
coordinate system gives us an atlas of the system; the warped and smoothed readouts may be
used for downstream analysis of the aligned slices. Thus, in our Bayesian GPSA framework,
the posterior distribution of interest is

»(G,F|X,Y,0) = p(X,Y|G, 1; 0)p(G, F)j o




where the vector © contains the parameters for the mean and covariance functions and Z =
p(X,Y|O) is a normalizing constant. However, Z is analytically intractable in DGPs (Dami-
anou and Lawrence, 2013). Thus, we use stochastic variational inference with inducing vari-
ables to approximate the posterior distribution over G and F ((Hensman et al., 2013)), see

Appendix [6.3.3]).

3.4 De novo and template-based common coordinate systems

Using GPSA, we propose two ways to align a set of slices: de novo alignment and template-
based alignment. A de novo alignment estimates a common coordinate system from scratch
using the slices while simultaneously projecting these slices into the common coordinate
system. Alternatively, if a common coordinate system exists for a tissue (and organism,
developmental phase, disease status, etc.) of interest, a template-based alignment maps the
samples to this given coordinate system. This is accomplished by fixing the pre-defined
common coordinate system as a non-warped slice within the set of aligned coordinates gf*,
or equivalently fixing the warping function of the template slice to the identity, ¢° (x) = x.
In practice, to avoid extreme warps in de novo alignment, we recommend arbitrarily choosing
one of the input samples to fix as the canonical coordinate system.

4 Experiments

4.1 Model settings and preprocessing for experiments

In our experiments, which are restricted to slices that approximately share fields-of-view, we
normalize all spatial coordinates so that the minimum x and y coordinate values are 0, and
the maximum coordinate values are 10.

For all experiments, we specify the mean function of the GP prior for the warping
functions to be the identity function. This choice is motivated by our expectation that
most distortions in tissue samples will be relatively small and local, with large translations
between slices being uncommon. We use the radial basis function (RBF') covariance function
for the first layer GPs. The RBF covariance function is given by

_ x/)Q

k(z,2') = 7% exp {—(””W} : (3)

where ¢ is the length scale parameter, and 72 is the spatial variance parameter. For the
second layer multi-output GP, with an LMC covariance function, we estimate the covariance
function parameters using maximum likelihood as part of our inference procedure. For the
first layer GP (the warp GP), we fix the covariance function parameters before model fitting.
Specifically, we fix the length scale as £ = 10 and the spatial variance or amplitude parameters
as 02 = 1 to ensure smooth and minimal warps. We found that these choices are relatively
robust within a range.



4.2 Simulations

We first validate the accuracy and robustness of our model using synthetic data generated
under a variety of settings.

4.2.1 Recovery of true latent common coordinates

First, we generated synthetic spatial gene expression data for two slices from a known
underlying common coordinate system in order to study the behavior of GPSA.

We began with a simple setting with a one-dimensional spatial coordinate system in order
to visualize the behavior of GPSA. We sampled a set of unobserved spatial coordinates
for n = 100 spatial locations in the interval [0,10]. We then generated observed spatial

coordinates for S = 2 slices by applying a GP warp (Equation 10)). We sampled synthetic
gene expression y;; for sample ¢ and gene j using a GP:

Yij = f(l‘:) + €, f ~ gP(Oa k)7 €~ N(()’ (72)7 (4)

where 7 is the ith sample of the latent coordinates. We set k£ to be the RBF covariance
function . In this experiment, we set 72 = 0.1. We fit GPSA to this dataset
using a de novo alignment and extracted the aligned coordinates for each slice. We found that
the warped coordinates were well aligned between the two slices and that the relationship
between spatial coordinates and gene expression was preserved from the latent coordinates
(Figure 1p). The mean squared error (MSE) for the aligned coordinates was 0.000134 (where
an MSE of 0 indicates perfect performance), while the MSE of the original spatial coordinates
was 0.0345. This result suggests that GPSA is able to align distorted and disparate samples
accurately.

Next, we extended this experiment to a more realistic setting in which the spatial coor-
dinates are two dimensional. In this case, the unobserved coordinate system was a 15 x 15
grid containing n = 225 spatial locations. The observed spatial coordinates for the first slice
were kept at the original, intact grid, and the observed coordinates for the second slice were
generated by randomly warping the true coordinate system with the GP warp (Equation 10)
using an isotropic RBF covariance function with length scale £ = 10 and spatial variance
72 = 0.5. We sampled synthetic gene expression values using the same approach as in
from a GP with the true spatial coordinates as inputs. We fit the model twice this
dataset: once using a de novo alignment and once using a template-based alignment with
the first slice as the template. For each, we extracted the estimated warped coordinates
of both slices. For both types of alignments, we again found that the coordinates were
aligned between slices with minimal distortion using the latent common coordinate system
(Figure 1p). The mean squared error (MSE) for the de novo and template-based aligned
coordinates was 0.000537 and 0.00725, respectively, while the MSE of the original spatial
coordinates was 0.733. These results indicate that GPSA is a viable model for aligning
spatially-resolved slices whose spatial coordinates have been distorted using a latent shared
coordinate system.

10
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Figure 1: Demonstration of GPSA with synthetic data. (a) GPSA applied to a one-
dimensional spatial coordinate system with p = 2 readout features (blue and orange) and
S = 2 slices (dots and crosses). The x-axis shows the spatial coordinate of each sample,
and the y-axis shows the readout values. The top panel shows the observed data, and the
bottom panel shows the aligned coordinate system from GPSA. (b) GPSA applied to a one-
dimensional spatial coordinate system with p = 10 readout features and S = 2 slices (dots
and crosses). The x- and y-axes show the spatial coordinates of each sample. Points are
colored by one feature value. The left panel shows the observed data, and the right panel
shows the aligned coordinate system from GPSA.

4.2.2 Robustness of GPSA to observation noise

We next tested GPSA’s robustness to changes in the data generating process for the synthetic
data. Specifically, we examined GPSA’s alignments for datasets generated under different
conditions. Specifically, the conditions we varied were the number of readout features, the
magnitude of distortion between the slices’ coordinate systems, and the level of noise vari-
ance in the readouts. To do so, we generated synthetic datasets with two-dimensional spatial
coordinates using the same approach as in the previous section. We varied the number of
readout features (“genes”) such that p € {1,20,50} and generated datasets for each of these
values. To vary the magnitude of the distortion between slices, we applied a GP warp
to the common coordinate system while varying the spatial variance 72 of the
RBF kernel , which corresponds to a larger distortion between slices. We fit
GPSA to each of these datasets using a template-based alignment with the first slice as the
template, repeating the experiment five times for each condition. For comparison, we ran
PASTE (Zeira et al.,|2021) and extracted the aligned coordinates using the estimated linear
transformation from PASTE. For each method, we computed the error of the aligned coor-
dinates. Every pair of simulated slices contains spots at identical locations. We measured
the error between the warped locations for each of these spots between every pair of slices,

11
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Figure 2: Benchmarking alignment error with synthetic data. (a) Alignment error
(as measured by MSE between all pairwise aligned slices with shared original coordinates)
of GPSA and PASTE (Zeira et al., 2021)) across varying numbers of readout features. (b)
Similar to (a), but shows the error across varying levels of distortion within the slices. (c)
Similar to (a) and (b), but shows the error across different levels of variance in the synthetic
expression data.

where a perfect warp of all slices would yield zero error:

n
SR =B

s<s’ 1=1

In this simulation experiment, we found that GPSA’s alignment error declined with
more readout features and increased with greater distortion . GPSA achieved a
substantially lower error than PASTE in all settings. We observe that this difference in
error is largely due to the fact that PASTE only applies an linear transformation to each
sample and is unable to account for local distortions. These results imply that our model is
robust to nonlinear warpings, different magnitude distortions, and differences in the number
of readout features.

4.2.3 Assessing alignment via readout prediction

Our experiments so far have tested whether GPSA can align the spatial coordinates of dis-
torted samples. However, we expect that similar expression patterns across aligned slices
should co-localize within the estimated common coordinate system. To test this, we at-
tempted to predict held-out readout values using the posterior estimates of expression val-
ues localized within the common coordinate system. In particular, we repeated the two-
dimensional experiment in Section but we held out 20% of the samples from one of
the slices. We then fit template-based GPSA and used the posterior estimates of expression
values within the common coordinate system to predict the readout values at the held-out
locations. Importantly, these predictions leverage information from all slices. We sampled

12
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Figure 3: Prediction experiment with synthetic data. Mean squared error (MSE) for
predictions of readout values versus ground truth on held-out spots from an aligned slice.
“Union” represents predictions from a GP fit to a naive concatenation of the observed sam-
ples; “Separate” refers to predictions from independent GPs fit to each sample separately;
and “GPSA” refers to predictions from GPSA fit across all samples using a latent common
coordinate system.

from the variational posterior predictive distribution at each held-out location:

) o .

To make predictions, because the DGP posterior mean is not available in closed form, we
approximate the posterior mean by drawing 7' = 10 samples for each location and taking the

~ t
average of these as a point prediction, f;; = % thl/ffj). We then compared these predictions

to the true readout values by computing the mean squared error. We compared GPSA to
two baseline approaches: one approach that fits a GP to each slice separately (“separate”
GP), and another approach that fits a GP to a naive concatenation of the original slices
(“union” GP).

We find that GPSA achieves lower prediction error compared to the two baseline methods
(Figure 3)). This result suggests that GPSA estimates phenotypic readout value distributions
localized within a common coordinate system that generalize in their predictive ability to
held-out spots.

4.2.4 Aligning samples with different fields-of-view

In practice, the overlap in spatial coverage of samples may not be perfect. There may be
settings in which we wish to align two spatial slices whose fields-of-views are different. To
simulate this scenario, we generated data in which one slice was generated from a grid of
spatial coordinates as before, and a second slice that was a small window fully contained
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Figure 4: Aligning synthetic samples with different fields-of-view. (a) Synthetic
data for two slices, one with a smaller field-of-view than the other. (b) Aligned coordinates
from PASTE. (c) Aligned coordinates from GPSA. (d) Error for GPSA and PASTE aligned

coordinates across five repetitions.

within the original spatial coordinates and on the same spot grid ) We then fit
template-based GPSA, using the larger slice as the template, to these two slices and extracted
the aligned coordinates. For comparison, we also ran PASTE and compared results with
those from GPSA.

We found that GPSA is able to recover the alignment between two slices even when the
fields-of-view are different —c). As with the experiment above, the results from
PASTE show substantially worse performance (Figure 4d).

4.3 Estimating common coordinate systems for spatial transcriptomics

Having validated GPSA as a viable model for robust spatial alignment of high-dimensional
observations, we next applied GPSA to spatially-resolved genomics data. Below, we present
analyses of data collected from three technologies: Spatial Transcriptomics (Stahl et al.,
2016)), the Visium platform (10x Genomics| 2020), and Slide-seqV2 (Stickels et all [2021).
We also perform analyses with a set of images of H&E stains jointly with the spatial genomics
data. An overview of the datasets used in this paper can be found in

For all datasets, we performed preprocessing on these spatial sequencing data that in-
cludes removing mitochondrial genes; removing spatial locations with low counts; normal-
izing the readout at each spatial location by the total number of counts at that location;
and log transforming, centering, and standardizing the gene counts. We further filter the
datasets to include genes with spatial variability using a nearest-neighbor approach (see Ap-
pendix for details). The spatial locations for each slice were normalized such that both
coordinates were in the interval [0,10], as the data were all produced with approximately
the same field-of-view.
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H Technology Tissue type 7 slices # samples H

Spatial Transcriptomics | Breast cancer tumor 4 {254,250, 263, 262}
Visium Mouse cortex 2 {2805, 2874}
Slide-seqV2 Mouse hippocampus 2 {18651,9247}

Table 1: Spatial genomics datasets used in this paper.
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Figure 5: Aligning ST data from a breast cancer tumor. (a) We applied a synthetic
warp to one slice of the ST data Stahl et al.| (2016) and sought to remove the resulting
spatial distortion. The original slice is plotted using dots, and the synthetic warped slice is
plotted using crosses. Points are colored by the expression level of one gene. (b) Alignment
from PASTE (Zeira et al. [2021)), which applies a linear transformation. (c) Alignment from
GPSA.

4.3.1 Aligning Spatial Transcriptomics profiles of breast cancer samples

We tested our model on a dataset from the Spatial Transcriptomics (ST) technology (Stahl
m m ) made up of four slices of a breast cancer tumor (Supplementary Figure

We first sought to validate GPSA on the ST data by perturbing the samples w1th an
artificial warp, and examining whether the common coordinate system estimated by GPSA
approximately removed the perturbation. For this experiment, we analyzed each of the four
samples separately. We applied a synthetic GP warp with 72 = 0.5,/%2 = 10
to each of the slices, and ran de novo GPSA on these misaligned samples. For comparison,
we also ran PASTE, and we visualized the aligned coordinates for each of these methods.

We found that GPSA was able to recover the underlying coordinate system .
Moreover, we observed that GPSA was able to correct the local spatial distortions in the
observed spatial coordinates. On the other hand, we found that PASTE’s global correction
was not sufficient to remove these distortions.
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4.3.2 Estimating expression variability across spatial locations

We asked whether we could estimate the variability of gene expression within each spatial
location. An accurate estimate of the variance would allow for useful analyses, such as
understanding the spatial heterogeneity of gene expression in a particular tissue region and
analyzing changes in expression along the z axis. Better alignment of the slices will lead to
a more precise quantification of variance.

To quantify expression variation across slices, we again leveraged the ST breast cancer
data (Stahl et al., [2016). Here, we aligned all four slices using a template-based alignment,
using the second slice as the template, and assumed they all shared a z-axis location as
biological replicates. We then transferred each slice’s observed gene expression onto the
template slice’s spatial coordinates by assigning each point in the template slice the average
of its nearest neighbors in the corresponding aligned slice. Using these four slices within
the common coordinate system, we then computed the variance for each gene (Figure 6h)
representing a combination of experimental, biological, and z-axis variability.

We found substantial variability in gene expression levels across the tissue for several
genes (Figure 6b). Moreover, several of these genes have been shown to be related to tumor
progression, including PRSS23 (Chan et al., [2012)) and CST/ (Zhang et al., 2017). These
results suggest that studying the variability of gene expression across aligned slices could
allow the exploration of spatial gene expression variation at single locations.

4.3.3 Aligning samples in three-dimensional space

Our analyses of the ST data so far have ignored the three-dimensional nature of the con-
tiguous slices. Thus, we next asked whether we could include information about the third
spatial dimension (the z axis) to create a common coordinate system plus localized gene
expression distributions for the three-dimensional tumor — what we would call a tumor
atlas (Rozenblatt-Rosen et al., [2020)).

To create a three-dimensional tumor atlas, we fit GPSA on the four ST breast cancer
slices, but this time we set the number of spatial dimensions to D = 3. We initialized the four
slices’ z axis coordinates as [0, 1, 2, 3] and allowed the model to warp these coordinates so that
the spatial relationships of the expression data were consistent across spatial dimensions.
Importantly, we used the same covariance function parameters for the warping GP across
all spatial dimensions, which allows the alignment along the z axis to be informed by spatial
relationships along the x and y axes.

To perform the alignment, we used a two-step procedure. In the first step, we performed
a template-based alignment with the second slice as the fixed template. In the second step,
we fixed the aligned coordinates from warped slices one, three, and four as the template,
and fit GPSA again, allowing the second slice’s coordinates to be adjusted.

This process resulted in a three-dimensional common coordinate system for the breast
cancer tumor, where we have an estimate of gene expression distribution at each location in
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Figure 6: Estimating gene expression variability using GPSA alignments. (a) Using
the aligned spatial coordinates provided by GPSA of the four ST slices, we estimated the
variability of gene expression within each spatial location by computing the variance across
slices for each gene. (b) Several genes show substantial variability across the slices. Points

are colored by the estimated variance at each spatial location.
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Figure 7: Three-dimensional alignment of ST breast cancer data. Aligned three-
dimensional coordinates plotted from two views. (a) shows the x axis vs. the z axis, and
(b) shows the z axis vs. the y axis. Each panel in (¢) shows the imputed gene expression
values for the gene FNI in one slice of the z axis. The location along the z axis increases
left to right and top to bottom.

this three-dimensional space. We found that the aligned z axis coordinates showed substan-
tial adjustments from their original positions . Because we are using GPs, we have
estimates of expression distributions for any location inside the grid or outside, whether that
location has been observed or not.

Moreover, we used our three-dimensional probabilistic tumor atlas to explore the spatial
organization of gene expression within the tumor. We imputed a dense three-dimensional
model of gene expression within the learned common coordinate system (Supplementaryl
Fig 2)). We found that expression levels of specific genes varied smoothly across this space,
with substantial variation along the z axis . These findings suggest that GPSA is
a feasible model for creating atlases using spatial genomics slices from a single tissue sample.

4.3.4 Aligning Visium profiles of mouse cortex

Next, we applied GPSA to data collected using the Visium platform developed by 10x
Genomics (10x Genomics, [2020). These data — which contain two adjacent slices — were
collected from a cross section of the sagittal-posterior region of a mouse brain. The two
slices contain measurements at 3,355 and 3,289 spatial locations, respectively. We again
filter the datasets to keep genes that are spatially variable using a nearest-neighbor approach
(Appendix, leaving us with 135 genes.
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Figure 8: Aligning serial spatial gene expression slices from mouse cortex from the
Visium platform. We applied GPSA to two adjacent slices collected from the posterior
sagittal region of the mouse brain. The top row shows a superposition of the two slices in
the unaligned coordinate system (top left) and the aligned coordinate system (top right).
The bottom row shows a magnified version of the region in the red bounding box in the top
row. We observe that, in the original slices, a cerebellar fold is misaligned (bottom left).
We find that the GPSA common coordinate system corrects this distortion (bottom right).

We fit template-based GPSA, designating the first sample as the template, to these
samples in order to align them to a shared coordinate system and remove distortions that
appeared during tissue collection or sequencing. We then extracted the aligned coordinates.

In the original data, there was a small spatial mismatch in the cerebellar folds of the
two slices . Examining the aligned coordinates, we found that GPSA was able
to correct this distortion by adjusting the second slice downward to match the first slice
(Figure ).

To quantitatively measure the quality of the estimated alignment, we performed a pre-
diction experiment similar to the one performed using simulated data in|subsubsection 4.2.3]
We fit GPSA using all of the spots from the first slice and 80% of the spots from the second
slice, reserving the remaining 20% of the spots for testing. We then made predictions for
the gene expression levels at the held-out spots using two strategies: 1) Naively stacking the
two slices and making predictions using a GP (the union GP), and 2) Using our estimated
common coordinate system and localized expression distributions to predict the spot expres-
sion values. We computed the R? for these predictions, repeating this experiment five times
for random train/test splits. We found that predictions using the aligned coordinates from
GPSA slightly outperformed those using the original coordinates . This finding
implies that GPSA is estimating a coordinate system that captures functional similarity and
removes distortion between slices.

4.3.5 Aligning Slide-seqV 2 profiles of the mouse hippocampus

We next leveraged a set of two tissue slices collected from the hippocampus region of two
mice using Slide-seqV2 (Stickels et al., 2021). Compared to the Visium platform, Slide-
seqV2 has a much higher spatial resolution, capturing RNA levels at near-cellular resolution.
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Figure 9: Prediction experiment with Visium data. Coeflicient of determination
(R?) for predictions of readout values versus ground truth on a held-out dataset. “Union”
represents predictions from a GP fit to a naive concatenation of the observed samples, and
“GPSA” refers to predictions from a GP fit jointly across all samples using the aligned
coordinate system.

These samples are not immediately comparable due to major shifts in the field-of-view
(Supplementary Fig 3)). Thus, as a preprocessing step, we first applied a coarse manual
rotation and translation to put the samples approximately within the same field-of-view.
We fit GPSA to these slices using a template-based alignment with the first slice chosen as
the template. We then examined the resulting aligned samples.

We found that the aligned coordinates showed correspondence between the two slices
for multiple major landmark regions. In particular, we found that the dentate gyrus and
CA1-3 pyramidal layer (also known as Ammon’s horn) from the two slices were well aligned
(Figure 10f). Due to differences in the field-of-view between the two slices and in the brains of
two different mice, we do not expect to achieve a perfect one-to-one matching of the spatial
coordinates. In particular, we observe that the choroid plexus is a prominent marker in the
first slice but not the second (Supplementary Fig 4)), as well as several other structures that
are not present in the second slice (Supplementary Fig 5)).

4.4 Multi-modal alignment: Incorporating histology images

Finally, we jointly aligned spatially-resolved gene expression and histology images. While
the histology images are much lower-dimensional in terms of the outcome variable, which
contains measurements for three image channels, these images often contain salient and in-
terpretable features of anatomy and structure. Furthermore, these images are widely used
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Figure 10: Alignment of Slide-seqV2 spatial gene expression profiles collected
from the mouse hippocampus. Each plot in the top row shows a superposition of the
two unaligned slices, and each plot in the bottom row shows a superposition of the aligned
slices. (a) and (e) are colored by the slice identity, and (b)-(d) and (f)-(g) are colored by
the expression levels of single genes (b,f: Hpca; c,g: Nrgn; d,h: Pcp4).

by pathologists, leading to their availability alongside spatial gene expression profiling. We
hypothesize that including histology images in the alignment procedure may produce better
alignments and further enhance the interpretability of our alignments in downstream anal-
yses, such as enabling annotation of tissue structures in the common coordinate framework.

To test this hypothesis, we again leveraged the mouse brain data from the Visium plat-
form. For each of the slices, a histology image is also available and pre-aligned to the
corresponding gene expression spatial locations. We again fit template-based GPSA using
the S = 2 slices and designating the first slice as the template, but this time we also in-
clude the histology images as phenotypic readout features and spatial locations. In this
setting, GPSA encourages spatial locations with similar patterns in both gene expression
and histology to be aligned. We extract the aligned coordinates from the model.

We found that the model successfully aligns these multi-modal samples . We
observed that, in the original histology stains, there was a slight mismatch between the slices
in one of the cerebellar folds (Figure 11f). After fitting GPSA, we observed that the fold had
been corrected in the aligned coordinate system ) Examining the corresponding
region of gene expression, we found that certain expression patterns also localized in this
area. For instance, the darker histology region corresponded to higher levels of expression in
the genes CAMK2A (Benjamini Hochberg adjusted p-value < 107°) and MT-CO1 (adjusted
p-value = 0.005) (Supplementary Fig 6]).

To more closely examine GPSA’s behavior in this setting, we computed a vector field
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demonstrating the displacement of each spatial coordinate after the warp. We observed
that substantial nonlinear warping was necessary in order to align the histology stains
). These results suggest that GPSA may feasibly be used to align multi-modal data
including spatial gene expression and histology measurements, broadening its potential ap-
plications.

5 Discussion

We have presented Gaussian Process Spatial Alignment (GPSA), a Bayesian model for
aligning multiple spatial genomics and histology slices in a known or unknown common
coordinate system. We have shown that our model can flexibly align samples from multiple
spatial sequencing technologies, fields-of-view, and data modalities.

Previous approaches for alignment of spatial genomics slices, such as PASTE ,
and Splotch (Aij6 et al. 2019), have relied on linear transformations of the observed
spatial coordinates. However, linear transformations do not account for local nonlinear
distortions in the coordinate systems. In this paper, we demonstrate the necessity of allowing
these finer-scale and nonlinear adjustments in a variety of data types. GPSA models local,
nonlinear transformations of spatial coordinates, which flexibly capture many types of warps
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but require that the warps are fairly small. We could imagine a strategy for building tissue
atlases that consists of two stages: 1) Running PASTE to obtain an initial coarse alignment,
and 2) Running GPSA to tune the local alignment to a coordinate system and produce a
common coordinate system for the slices with localized measurement distributions across
the space.

We applied GPSA to data from three spatial gene expression technologies: Spatial Tran-
scriptomics (Stahl et al., 2016), Visium (10x Genomics, 2020), and Slide-seqV2 (Stickels
et al| 2021)), plus pre-aligned histology images. Given the flexible nature of GPSA’s model-
ing assumptions, our model is applicable to many other spatial sequencing technologies (both
present and future) with varying levels of resolution, fields-of-view, and depth of phenotypic
profiling.

Several future directions could be pursued. The computational complexity of GPSA
can be a burden for certain datasets. While we observe that GPSA obtains more accurate
alignments compared to competing parametric approaches, such as PASTE (Zeira et al.
2021)), this comes at the cost of time. Our variational inducing point approach to inference
reduces the time complexity from O(n3) to O(nm?), where n and m are the number of
data points and inducing points, respectively. However, a large number of inducing points
are often required for high-resolution spatial genomics technologies, which can result in our
approximation being too slow to fit. Nonetheless, we find that the times required to fit GPSA
to the data presented here are not prohibitive (Supplementary Fig 7)), since researchers
only need to align their samples once with GPSA, and any downstream analysis on the
aligned samples will not require a realignment. Including known anatomical landmarks in the
model could speed up the alignment and lead to more biologically faithful and interpretable
coordinate systems. However, we also note that an attractive feature of GPSA is its reliance
on almost no prior knowledge about the structure of the tissue. Future work may also use
landmarks inferred from the histology images to annotate the inferred shared coordinate
system to automate this process.

Additionally, refining the process of filtering phenotypic readout features (e.g., genes)
with no spatial variability could further improve the speed and accuracy of our inference
approach, as GPSA exploits spatially-variable patterns to perform the alignment. While we
have proposed a simple nearest-neighbor approach for filtering features in this work, further
work could be done to improve this step. Additional study to determine when it is most
appropriate to use a low-rank model of the readout features (as opposed to modeling each
feature independently) in the context of alignment could be warranted. The linear model of
coregionalization model could also be extended across data modalities to explicitly capture
the relationship across data modality features.

Finally, there remains an opportunity for a deeper theoretical study of GPSA and DGPs
in general. Studying the posterior consistency of the kernel parameters and the latent
variable G could lead to theoretical guarantees for the resulting common coordinate systems.
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6 Appendix

6.1 Data acquisition

6.1.1 Spatial Transcriptomics

ST data were obtained from the PASTE code repository: https://github.com/raphael-group/
pastel All four layers from the sample data/ directory were used.

6.1.2 Visium

Visium data were obtained from the 10x Genomics website. Data for the two slices were
downloaded from the “Datasets” page. Specifically, spatial gene expression and H&E stains
were downloaded from the following links:

e Mouse Brain Serial Section 1 (Sagittal-Posterior): https://www.10xgenomics.com/
resources/datasets/mouse-brain-serial-section-1-sagittal-posterior-1-standard-1-1-0

e Mouse Brain Serial Section 2 (Sagittal-Posterior): https://www.10xgenomics.com/
resources/datasets/mouse-brain-serial-section-2-sagittal-posterior-1-standard-1-1-0
6.1.3 Slide-seqV2

Slide-seqV2 data were downloaded from the Broad Institute’s Single Cell Portal: https://
singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-transcripto
Two pucks corresponding to the mouse hippocampus were used: Puck 191204 01 and

Puck_200115_08.
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6.2 Code

Code for the model and experiments is available at https://github. com/andrewcharlesjones/
spatial-alignment.

6.3 Methods
6.3.1 Gaussian processes

A Gaussian process (GP) is a stochastic process defined as a collection of random vari-
ables where any subset follows a multivariate Gaussian distribution. Specifically, y1,y2, . ..
constitute a GP if, for any finite set of indices i1, 49, ..., %y, it holds that

(yilvyi27 e 7yin)T NNR(H’?E)v

where p is a mean vector and X is a positive definite covariance matrix. GPs are widely used
in functional data analysis, machine learning, and spatial statistics due to their flexibility and
expressiveness in modeling complex dependent data (Rasmussen and Williams, 2005} |Stein),
1999; (Gelfand et al., 2010; Cressie and Wikle|, 2011; |Banerjee et al., [2014). For example,
in nonparametric regression models, GPs are commonly used to model unknown arbitrary
functions; in Bayesian contexts, they act as priors over functions (Ghosal and Van der Vaart),
2017).

GPs are often used as prior distributions over functions, as in this paper. In this case,
for a function f defined on the domain R”, we denote a GP prior as

f ~ gp(“7 k)>

where p: RP? — R is a mean function and k : RP x RP — R is a positive definite covariance
function (also known as a kernel function or covariogram). For noisy responses from the
noiseless function f, we include Gaussian noise: y ~ N(f(x),0?), where o is often referred
to as the nugget.

6.3.2 Deep Gaussian processes

Deep GPs (DGPs) were developed to further extend the expressivity of GPs (Damianou and
Lawrence, [2013; [Salimbeni and Deisenroth, 2017). DGPs are a composition of functions,
each of which is drawn from a GP. In the univariate case, the a function drawn from an
L-layer DGP is given by

f=frofL-10-0f,

where for each ¢ = 1,..., L, we have f; ~ GP(us, ke), and yp = fo(fo—1(--- f1(x))) is the
output of the fth layer an input sample x. In this work, we use two-layer DGPs, or L = 2.
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6.3.3 Stochastic variational inference for GPSA

Although closed-form posterior distributions are available in GPs, this is not the case in
DGPs. To perform approximate inference, we leverage a sparse GP framework using inducing
points (Titsias, 2009; [Snelson and Ghahramani, 2006; Salimbeni and Deisenroth, [2017)).
Because GPSA is a two-layer DGP, we include inducing points at each of the two layers.
In particular, suppose we have a set of M* < n, inducing locations (also known as pseudo-
inputs) for each slice X!, ... , X% ¢ RM SXE) , and another set of M < N inducing locations
in the common coordinate system layer G € RM*P_ We then denote the associated set
of inducing values (pseudo-outputs) for the two layers as U, ... ,UGS € RM*xD and
UF € RMXP_ respectively. The joint model (omitting the dependence on the covariance
function parameters ©) is then

p(G,F,U% U, X,Y) = p(Y|[F) p(FU",G) p(U"IG) p(G[U%X) p(UX) .
—_—— — — = ~—
Noise model Readout GP Inducing prior Warp GP Inducing prior
(5)
Note that p(F|U,G) and p(G|U% X) have closed forms because they are conditional
multivariate Gaussians. If a Gaussian noise model is assumed, then p(Y|F) also has a
closed form. However, inference in this model scales cubically with the number of spots, so
we seek a faster variational approach.
We now specify a variational model (), whose parameters we will optimize to approximate
the exact posterior . Following earlier work (Damianou and Lawrence, [2013)),
we use the following form for the approximate posterior:

Q = p(F|U", G)q(U")p(G[UY, X)q(UY), (6)

where ¢(U¥) and ¢(U%) are chosen to be multivariate normal distributions. We denote
the variational parameters collectively as ¢. Because all distributions are Gaussian, we can
analytically marginalize out the pseudo-outputs U and UF (Salimbeni and Deisenroth,
2017). See Appendix for details.

The optimization problem is then to minimize the KL divergence from the exact posterior
to the approximate posterior (Equation 6|) with respect to the variational
parameters. This is equivalent to maximizing a lower bound on the log marginal likelihood
L <logp(Y) (the evidence lower bound, or ELBO). The variational parameters ¢ are made
up of the parameters of the prior distributions for the pseudo-outputs, ¢(U*") and ¢(U%), and
optionally the inducing locations }21, . ,)NCS , G. More precisely, our optimization problem
is _ _
p(Y[F)p(U"|G)p(U% X)

q5(UF)q4(UC)

We provide a complete derivation and explanation of this lower bound in the next sec-
tion.Although this lower bound cannot be evaluated in closed form, we can efficiently sample
from it and use these samples to maximize with respect to the variational parameters ¢.

mgx L, L=Eg |log (7)
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6.3.4 Maximizing the ELBO in GPSA

Recall that the evidence lower bound for a generic model with observed data z, latent
variable z, and approximating distribution ¢ is given by

¢=Fuo s 7

where p(z, z) is the joint model density, and ¢(z) is the variational distribution.
Plugging in our GPSA model, the ELBO is given by

log p<Y|F>Mp<UF|é>Mp<UG|X>]
(BB G)g(UF)p(GIES X)g(US)
p(Y[F)p(U"|G)p(UCIX)
a(TF)q(UC)

L =Eg

=Eg |log

We can split into a term containing the expected log likelihood and two terms
that are KL divergences:

Bl aun) ] aul)
£ = Eq [logp(Y|F)] — Eq llg (UF,G)] Eq llgp(Usz)] (®)
— Eq [log p(Y[F)] — Dicr. (a(UF)[[p(UIG) = Dicr, («(U9)|p(UCX)) . (9)

Because we let ¢(UT) and ¢(U®) be multivariate Gaussians, the KL divergence terms have
closed forms, and only remaining term to estimate is the expected log likelihood (the first
term in . We estimate this term with a Monte Carlo approximation. Given T
samples of F, our estimate is

T
1 ~
Eq [logp(Y[F)] ~ § log p(Y|Fy)

where f‘l, .. FT ~ Q. We use a two-stage procedure to obtain these samples. First, we
draw 5amples of G from p(G|X X) = [p( G|UG X, X)p(U%|X)dUC. Second, we draw
samples of F from p(F]G, G = [ p( F\UF, G, G) (UF]G)dUF. We can write each of these
distributions in closed form, Which we show next.

Let ¢(u§®) = N(m§* ,SGS) The marginal for G is given by

a(gilm{*, S7*; X, X) = N (5, £5°)

with
FG* = m(X?) + KL,y K3l (mG* — m(X*))
_ T 1 . G 1 _
Eds — KXSXS I<)(é)(‘s]z<)(5)(5 (KXSXS S S)KXSXSKXSXS'
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Let g(u}’) = M(m}", SI). The marginal for F is given by
¢(f;m?, 8. G,G) = N(iF', =)
with

iy =m(G)+ K Kk (mf —m(G))

- T F
> = Kac ~ K Kz (Kag — S KL Kgg:

6.3.5 Multivariate correlated outcomes

In its simplest form, GPSA assumes that feature readouts are independent of one another
by modeling each with a separate GP-distributed function f;. However, given that our
phenotypic readouts of interest (gene expression, for example) are often highly correlated
between features, we would like to leverage the correlation between readouts to fit f. There
are several approaches to accounting for this correlation (Boyle and Frean) 2005; Goulard
and Voltzl 1992; Gelfand et al., |2004).

We choose to leverage the linear model of coregionalization (LMC) (Goulard and Voltz,
1992). Rather than allowing p separate GPs, the LMC assumes there are L < p latent
Gaussian processes, and that the observed readouts are linear combination of the outputs of
these latent GPs. To incorporate this into our registration model, we assume the following
model for the second layer GP:

= WF +¢
[Flei = fo(gi) ~ GP(1e(g;), ke(g: G))
e ~ N(0,5°T)

where W € RPXL is a loadings matrix, and F € RE*Y is a matrix containing latent factors.
Given a set of warped coordinates G, our likelihood is then

L

p(yj|F,wj,0*) [ [ p(£ilG)
1 =1

p(Y,F|W,G,0,0%) =

—-

J

-

N(y;|Fw;,o?In) [ [N (flm(G), Kea).

—-

1

~

1

J

Including the warp model, our entire joint model becomes

S D
p(Y,F,G|W,0,0?) HN (v,|Fw;, 02Ix) HN film(G), Kaa) [ [NV (g5lni(X?), Kxoxs) -
j=1 s=1d=1

~~

Noise LMC ‘Warp prior
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In our applications, we may not be interested in directly estimating the latent factors F.
We can marginalize these out (Kyzyurova, [2019)) and write the likelihood as

vee(Y)|G ~ N (11, %),

where
L
!
h=0xy 5= KU @ wiw]
=1
If the latent covariance functions k1, ...,k are the same, the covariance simplifies as > =
Keg @ WWT.

6.3.6 Multi-modal outcomes

We may sometimes have access to multiple samples from each slice, each of whose pheno-
typic readouts are collected from different modalities. For example, we may have a spatial
transcriptomics sample and a histology image in each slice. While both of these modalities
lie in a two-dimensional spatial coordinate system, they have different response values. In
this example, the spatial transcriptomic readouts will be Y! € R"*P_ where p is the number
of genes, while the histology image readouts will be Y2 € R™*9, where ¢ is the number of
color channels.

Our model can easily accommodate this setting. We assume that the different modalities
are already aligned within each slice, which is a reasonable assumption in practice. Instead
of computing the likelihood for just one set of phenotypic readouts, we compute it for each
modality’s phenotypic readouts. For example, the likelihood becomes

p(Y,G[X,0,0%) = p(Y|G,0,,0%)p(G|X, 0,)
M Pm

S D
= H Hp(y}”le,Oo,cf?)HH (85/X%, 0,

m=1j=1
where M is the number of modalities, p,, is the number of readout features in modality m,
and Y™ is the set of readout features for modality m.
6.3.7 Non-Gaussian likelihoods

We can easily accommodate non-Gaussian likelihoods in this model. In particular, we can
specify the likelihood in p(Y|F) to be any suitable likelihood. In the setting of
sequencing data, the measurements often come in the form of nonnegative integer counts,
for which a Poisson likelihood is often a reasonable choice.
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6.3.8 Nearest neighbors approach to filtering for spatially variable genes

For the spatial gene expression datasets, we use a simple approach to remove genes that do
not show noticeable spatial variability. Empirically, we find that removing these genes leads
to faster convergence and more accurate common coordinate systems.

To estimate the spatial variability of each gene, we perform a prediction experiment
where for each spatial location x;, we predict its expression value as the average of its k
nearest neighbors (we choose k = 10). We then compute the coefficient of determination (R?)
between these predictions and the measured expression to estimate the spatial coherence of
the expression values. We then choose a threshold 7 and remove any genes with an R? value
less than 7 (we choose 7 = 0.3).

We find that this simple approach identifies a set of genes with high spatial variability
(Supplementary Figures E[) and identifies genes that have been validated by previous
work (Svensson et al., [2018). More complicated procedures to identify spatially variable
genes could be used (Svensson et al., [2018), but this is not the primary focus of our work.

6.3.9 Synthetic warps

Throughout our experiments, we apply three different types of random warps, which we
describe here.

1. Linear warp: This warp applies a linear transformation to the observed spatial coor-
dinates for each slice X* such that ¥ = (x*)" 35 + By +efor d € {1,...,D}, where
B35 € RP, B350 € R are the slope and intercept, respectively, and e ~ N (0, 0?) is a noise
term.

2. Polar warp: For a single spatial sample be represented as x = [z7, mg]T, this function
is defined as

9°(z;0) = [

where 0 = {r, ¢}. We further parametrize 6 to allow for location-specific distortions.
Thus, 6 is implicitly a function of x as well,

1+ 7 Ccos o
To + rsin¢

[;z] = f(z) = Bx

where B is a 2 x 2 coefficient matrix. The full warping function can then be written as

S(2;0) = x1 + brixy cos(biaz)
g ’ T2 + b21£L‘1 Sil’l(b22$2)

3. GP warp: Applies a transformation function that is drawn from a GP:
xg = fi(xg) +e  [fi(xq) ~ GP(xg Kxsxs)- (10)
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Supplementary Fig 1: Spatial Transcriptomics sample from breast cancer patient.

6.4 Supplementary figures
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Figure 13: Graphical model for multimodal GPSA.

Densely imputed expression

Supplementary Fig 2: Dense imputation of gene expression within the three-
dimensional common coordinate system for the ST breast cancer data.
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Supplementary Fig 3: Slide-seqV2 slices without initial coarse alignment.
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Supplementary Fig 4: Expression of the gene ENPP2 in the two Slide-seqV?2 slices.
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Supplementary Fig 5: Expression of the gene MR-ND1 in the two Slide-seqV2
slices.
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Supplementary Fig 6: Expression of MT-CO1 and CAMKZ2A in the Visium mouse
cortex.
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Supplementary Fig 7: Time complexity of GPSA and PASTE.
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Supplementary Fig 8: Spatially variable and non-variable genes in the Visium
mouse brain dataset. The top row shows the a set of example genes that were spa-
tially variable, and the bottom row shows an example set of genes that were not highly

spatially variable.
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Supplementary Fig 9: Spatially variable and non-variable genes in the Slide-seqv2
mouse brain dataset. The top row shows the a set of example genes that were spatially
variable, and the bottom row shows an example set of genes that were not highly spatially

variable.
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